Tìm số nghiệm nguyên dương của phương trình
sin π 4 3 x - 9 x 2 - 16 x - 80 = 0
A. 0
B. 1
C. 2
D. 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sin^2x-2m.sinx.cosx-sinx.cosx+2mcos^2x=0\)
\(\Leftrightarrow sinx\left(sinx-cosx\right)-2mcosx\left(sinx-cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2m.cosx\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=2m.cosx\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=2m\end{matrix}\right.\)
Do \(tanx=1\) ko có nghiệm đã cho nên \(tanx=2m\) phải có nghiệm trên khoảng đã cho
\(\Rightarrow tan\left(\dfrac{\pi}{4}\right)< 2m< tan\left(\dfrac{\pi}{3}\right)\)
\(\Rightarrow1< 2m< \sqrt[]{3}\)
\(\Rightarrow m\in\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) (hoặc có thể 1 đáp án là tập con của tập này cũng được)
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
\(\Leftrightarrow1-2sin^2x+\left(2m-3\right)sinx+m-2=0\)
\(\Leftrightarrow2sin^2x-\left(2m-3\right)sinx-m+1=0\)
\(\Leftrightarrow2sin^2x+sinx-2\left(m-1\right)sinx-\left(m-1\right)=0\)
\(\Leftrightarrow sinx\left(2sinx+1\right)-\left(m-1\right)\left(2sinx+1\right)=0\)
\(\Leftrightarrow\left(2sinx+1\right)\left(sinx-m+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\dfrac{1}{2}\\sinx=m-1\end{matrix}\right.\)
Pt có đúng 2 nghiệm thuộc khoảng đã cho khi và chỉ khi:
\(\left\{{}\begin{matrix}m-1\ne-\dfrac{1}{2}\\-1\le m-1\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\0\le m\le2\end{matrix}\right.\)
Điều kiện 9 x 2 - 16 x - 80 ≥ 0 ⇔ x ≥ 4
Phương trình đã cho tương đương với
π 4 3 x - 9 x 2 - 16 x - 80 = k π k ∈ ℤ ⇔ 3 x - 9 x 2 - 16 x - 80 = 4 k ⇔ 9 x 2 - 16 x - 80 = 3 x - 4 k ⇔ x ≥ 4 k 3 9 x 2 - 16 x - 80 = 3 x - 4 k 2 ⇔ x ≥ 4 k 3 x = 2 k 2 + 10 3 k - 2
Yêu cầu bài toán tương đương với
2 k 2 + 10 3 k - 2 ≥ 4 k 3 x = 2 k 2 + 10 3 k - 2 ≥ 4 2 k 2 + 10 3 k - 2 ∈ ℤ
Ta có
2 k 2 + 10 3 k - 2 ≥ 4 k 3 x = 2 k 2 + 10 3 k - 2 ≥ 4 ⇔ - 6 k 2 + 8 k + 30 3 k - 2 ≥ 0 2 k 2 - 12 k + 18 3 k - 2 ≥ 0 ⇔ 2 3 < k ≤ 3
Vì k ∈ ℤ nên k ∈ 1 ; 2 ; 3
Với k = 1 suy ra 2 k 2 + 10 3 k - 2 = 12 ∈ Z
Với k = 2 suy ra 2 k 2 + 10 3 k - 2 = 9 2 ∉ 9 2
Với k = 3 suy ra 2 k 2 + 10 3 k - 2 = 4 ∈ Z
Kết hợp với điều kiện ta suy ra x = 4; x = 12
Vậy có 2 giá trị nguyên dương cần tìm
Đáp án C