3. Cho a, b, c là độ dài ba cạnh của một tam giác.
Mệnh đề nào sau đây không đúng?
A. a 2 < a b + a c
B. a b + b c > b 2
C. b 2 + c 2 < a 2 + 2 b c
D. b 2 + c 2 > a 2 + 2 b c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Từ giả thiết ta có a 2 + b 2 = c 2
log c + b a + log c − b a = 1 log a c + b + 1 log a c − b = log a c + b + log a c − b log a c + b log a c − b = log a c 2 − b 2 log a c + b log a c − b = log a a 2 log a c + b log a c − b = 2 log a c + b log a c − b = 2 log c + b a . log c − b a
\(A=\dfrac{3}{b+c-a}+\dfrac{4}{c+a-b}+\dfrac{5}{a+b-c}\)
\(=\dfrac{3}{c+a-b}+\dfrac{3}{a+b-c}+\dfrac{2}{b+c-a}+\dfrac{2}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\)
\(=3\left(\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\right)+2\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+b-c}\right)+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\)
\(do\) \(a,b,c\) \(là\) \(độ\) \(dài\) \(3\) \(cạnh\) \(\Delta\Rightarrow a,b,c\) \(không\) \(âm\) \(\)
\(và\left\{{}\begin{matrix}b+c-a>0\\c+a-b>0\\a+b-c>0\end{matrix}\right.\) \(\Rightarrowáp\) \(dụng\) \(Am-GM\)
\(\Rightarrow\left\{{}\begin{matrix}3\left(\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\right)\ge3.\dfrac{4}{c+a-b+a+b-c}\ge\dfrac{12}{2a}\ge\dfrac{6}{a}\\2\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+b-c}\right)\ge2.\dfrac{4}{b+c-a+a+b-c}\ge\dfrac{8}{2b}\ge\dfrac{4}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{4}{b+c-a+c+a-b}\ge\dfrac{4}{2c}\ge\dfrac{2}{c}\\\end{matrix}\right.\)
\(\Rightarrow A\ge\dfrac{6}{a}+\dfrac{4}{b}+\dfrac{2}{c}\)
Đặt \(P=\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
Ta có:
\(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow\sqrt{a^2+b^2}\ge\dfrac{\sqrt{2}}{2}\left(a+b\right)\)
Tương tự và cộng lại ta được BĐT bên trái
Dấu "=" xảy ra khi \(a=b=c\)
Bên phải:
Áp dụng BĐT Bunhiacopxki:
\(P^2\le3\left(a^2+b^2+b^2+c^2+c^2+a^2\right)=6\left(a^2+b^2+c^2\right)\)
Mặt khác do a;b;c là 3 cạnh của 1 tam giác:
\(\Rightarrow\left\{{}\begin{matrix}a+b>c\\a+c>b\\b+c>a\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ac+bc>c^2\\ab+bc>b^2\\ab+ac>c^2\end{matrix}\right.\)
\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)< 6\left(ab+bc+ca\right)\)
\(\Rightarrow P^2\le3\left(a^2+b^2+c^2\right)+3\left(a^2+b^2+c^2\right)< 3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)\)
\(\Rightarrow P^2< 3\left(a+b+c\right)^2\Rightarrow P< \sqrt{3}\left(a+b+c\right)\)
Phương trình x2 + (a + b + c)x + (ab + bc + ca) = 0
Có Δ = (a + b + c)2 − 4(ab + bc + ca)
= a2 + b2 + c2 – 2ab – 2bc – 2ac
= (a – b)2 – c2 + (b – c)2 – a2 + (a – c)2 – b2
= (a – b – c)(a + c – b) + (b – c – a)
(a + b – c) + (a – c – b)(a – c + b)
Mà a, b, c là ba cạnh của một tam giác nên
a − b − c < 0 b − c − a < 0 a − c − b < 0 ; a + c − b > 0 a + b − c > 0
Nên Δ < 0 với mọi a, b, c
Hay phương trình luôn vô nghiệm với mọi a, b, c
Đáp án cần chọn là: D
Do a, b, c là độ dài ba cạnh của một tam giác nên theo bất đẳng thức tam giác ta có:
* a < b + c ⇔ a 2 < a b + c ⇔ a 2 < a b + a c
* a + c > b ⇔ b a + c > b 2 ⇔ a b + b c > b 2
* b - c < a ⇔ b - c 2 < a 2 ⇔ b 2 - 2 b c + c 2 < a 2 ⇔ b 2 + c 2 < a 2 + 2 b c
Do đó, mệnh đề D không đúng.