\(m^2_a+m^2_b+m^2_c\) là tổng bình phương độ dài ba trung tuyến của tam giác ABC....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2023

Áp dụng công thức đường trung tuyến

\(m_a^2+m_b^2+m_c^2=\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}+\dfrac{c^2+a^2}{2}-\dfrac{b^2}{4}+\dfrac{a^2+b^2}{2}-\dfrac{c^2}{4}\)

                          \(=\dfrac{3}{4}\left(a^2+b^2+c^2\right)\)

Chọn A

NV
29 tháng 2 2020

Thay công thức trung tuyến vào ta được:

\(m_a^2+m_b^2+m_c^2=a^2+b^2+c^2-\frac{1}{4}\left(a^2+b^2+c^2\right)=\frac{3}{4}\left(a^2+b^2+c^2\right)\)

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Tích vô hướng của hai vectơ và ứng dụng

15 tháng 6 2018

Bài 1:

Ta có: \(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}=\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\)

Áp dụng bđt Cauchy Schwarz có:

\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8bc}+c\sqrt{c^2+8bc}}\)

Lại sử dụng bđt Cauchy schwarz ta có:

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\cdot\sqrt{a^3+8abc}+\sqrt{b}\cdot\sqrt{b^3+8abc}+\sqrt{c}\cdot\sqrt{c^3+8abc}\ge\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}}=\sqrt{\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+24abc}}\)

=> Ta cần chứng minh: \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)

hay \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Áp dụng bđt Cosi ta có:

\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)

Nhân các vế của 3 bđt trên ta đc:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)

=> Đpcm

I) trắc nghiệm câu 1 mệnh đề nào sau đây là mệnh đề sai? A. \(\forall n\in N:n\le2n\) B. \(\exists n\in N:N^2=n\) C. \(\forall x\in R:x^2>0\) D. \(\exists x\in R:X>X^2\) câu 2: cho nữa khoảng A=[0;3) và B=(b;b+4]. \(A\subset B\) nếu: A. -1<b\(\le\)0 B. -1\(\le\)b<0 C. -1\(\le\)b\(\le\)0 D. đáp án khác II)tự luận câu 1 a) cho mệnh đề:" nếu một số tự nhiên chia hết cho 6 thì nó chia hết cho 3". phát biểu mệnh đề dưới dạng...
Đọc tiếp

I) trắc nghiệm

câu 1 mệnh đề nào sau đây là mệnh đề sai?

A. \(\forall n\in N:n\le2n\) B. \(\exists n\in N:N^2=n\) C. \(\forall x\in R:x^2>0\) D. \(\exists x\in R:X>X^2\)

câu 2: cho nữa khoảng A=[0;3) và B=(b;b+4]. \(A\subset B\) nếu:

A. -1<b\(\le\)0 B. -1\(\le\)b<0 C. -1\(\le\)b\(\le\)0 D. đáp án khác

II)tự luận

câu 1

a) cho mệnh đề:" nếu một số tự nhiên chia hết cho 6 thì nó chia hết cho 3". phát biểu mệnh đề dưới dạng "điều kiện cần"

b) cho mệnh đề P:"\(\exists x\in Q:2x^2-5x+2=0\).Xét tính đúng sai của mệnh đề P và nêu mệnh đề phủ định của mệnh đề P

câu 2 cho hai tập hợp sau> Hãy liên kế các phần tử trong tập A và B

\(A=\left\{x\in N:\left|x\right|< 4\right\}\)

\(B=\left\{x\in Q:\left(4x^2-x\right)\left(x^2+3x-4\right)=0\right\}\)

câu 3 cho hai tập hợp \(A=\left\{x\in N:\left(x^2+2x\right)\left(x^2+x-2\right)\right\}=0\)và tập hợp \(B=\left\{-1;0;1\right\}\). Tìm các tập hợp \(A\cup B;A\cap B;\) A\B;B\A

câu 4 cho hai tập hợp \(A=\left\{x\in R/-2< x< 3\right\}\)\(B=(-\infty;2]\). Tìm tập hợp \(A\cup B;A\cap B;\)A\B;B\A và biểu diễn trên trục số

0
6 tháng 11 2018

câu 4 \(\sqrt{x^2-2x}=\sqrt{2x-x^2}\Leftrightarrow x^2-2x=2x-x^2\)

\(\Leftrightarrow2\left(x^2-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

câu C

Câu 5 \(x\left(x^2-1\right)\sqrt{x-1}=0\)

ĐK \(x\ge1\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\sqrt{x-1}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\\sqrt{x-1}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nh\right)\\x=-1\left(l\right)\end{matrix}\right.\)

vậy pt có 1 nghiệm

câu B

Trắc nghiệm: Câu 1. Tìm mệnh đề đúng: A. \(a< b\Leftrightarrow ac< bc\) B. \(a< b\Leftrightarrow a+c< b+c\) C. \(\left\{{}\begin{matrix}a< b\\c< d\end{matrix}\right.\Rightarrow ac< bd\) D. \(a< b\Leftrightarrow\dfrac{1}{a}>\dfrac{1}{b}\) Câu 2. Tìm mệnh đề đúng: A. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow ac>bd\) B. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow\dfrac{a}{c}>\dfrac{b}{d}\) C....
Đọc tiếp

Trắc nghiệm:

Câu 1. Tìm mệnh đề đúng:

A. \(a< b\Leftrightarrow ac< bc\)

B. \(a< b\Leftrightarrow a+c< b+c\)

C. \(\left\{{}\begin{matrix}a< b\\c< d\end{matrix}\right.\Rightarrow ac< bd\)

D. \(a< b\Leftrightarrow\dfrac{1}{a}>\dfrac{1}{b}\)

Câu 2. Tìm mệnh đề đúng:

A. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow ac>bd\)

B. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow\dfrac{a}{c}>\dfrac{b}{d}\)

C. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow a-c>b-d\)

D. \(\left\{{}\begin{matrix}a>b>0\\c>d>0\end{matrix}\right.\Rightarrow ac>bd\)

Câu 3. Tìm mệnh đề sai:

A. \(a< b\Rightarrow a^2< b^2\)

B. \(a< b\Rightarrow a^3< b^3\)

C. \(0< a< b\Rightarrow\sqrt{a}< \sqrt{b}\)

D. \(a< b\Rightarrow\sqrt[3]{a}< \sqrt[3]{b}\)

Câu 4. Cho 2 phát biểu (1) \(\left|x\right|\ge-x\) và (2) \(\left|x\right|\ge x\)

A. Chỉ phát biểu (1) đúng

B. Chỉ phát biểu (2) đúng

C. Cả (1) và (2) đều đúng

D. Cả (1) và (2) đều sai

Câu 5. Nếu \(a>b;c>d\) thì bất đẳng thức nào sau đây luôn đúng

A. \(\dfrac{a}{c}>\dfrac{b}{d}\)

B. \(ac>bd\)

C. \(a-c>b-d\)

D. \(a+c>b+d\)

Câu 6. GTLN của hàm số \(f\left(x\right)=\left(x+3\right)\left(5-x\right)\) là:

A. 16

B. 0

C. -3

D. 5

Câu 7. Cho \(x>0;y>0\)\(xy=6\). GTNN của \(x^2+y^2\) là:

A. 12

B. 6

C. 14

D. 10

4
16 tháng 1 2019

1.b

16 tháng 1 2019

2.d

28 tháng 1 2018

câu 1: \(VT=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)