K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2020

Đáp án C

26 tháng 7 2017

Chọn C.

Ta có: m(x - m) ≤ x - 1 ⇔ mx - m 2  ≥ x - 1 ⇔ (m - 1)x ≥  m 2  - 1

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

+) Với m < 1 ⇒ m – 1 < 0 ⇒ Tập nghiệm của bất phương trình là S = ( - ∞ ;m+1].

+) Với m > 1 ⇒ m – 1 > 0 ⇒ Tập nghiệm của bất phương trình là S = [m+1; + ∞ ).

12 tháng 4 2017

Đáp án C

2: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot\left(-m\right)=1-4m\)

Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}1-4m< 0\\-1< 0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{4}\)

31 tháng 12 2018

Chọn B

Bất phương trình đã cho :

( m2-m) x+ m < 6x+2

⇔ ( m+ 2) (m-3) x< 2-m

có tập nghiệm là R khi

11 tháng 10 2018

Đáp án C.

NV
20 tháng 1 2021

Câu 2 bạn ghi thiếu đề

Câu 1:

\(\Leftrightarrow\left(m^2-3m\right)x+2x< 2-m\)

\(\Leftrightarrow\left(m^2-3m+2\right)x< 2-m\)

BPT đã cho vô nghiệm khi và chỉ khi:

\(\left\{{}\begin{matrix}m^2-3m+2=0\\2-m\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\\m\ge2\end{matrix}\right.\) \(\Rightarrow m=2\)

=>x^2-[(m-1)+(m-5)]x+m^2-6m+5<=0

=>x(x-m+1)-(m-5)(x-m+1)<=0

=>(x-m+1)(x-m+5)<=0

=>m-5<=x<=m-1

=>S=[m-5;m-1]

(3;5) là tập con của S

=>m-5>=3 và m-1<=5

=>m>=8 và m<=6

=>Loại

3 tháng 4 2017

6 tháng 11 2019

Bất phương trình x2-3x+2  ≤ 0 ⇔ 1 ≤ x ≤ 2

Bất phương trình mx2+(m+1) x+m+1   ≥ 0  

Xét hàm số  f ( x ) = - x - 2 x 2 + x + 1   ,   1 ≤ x ≤ 2

Có  f ' ( x ) = x 2 + 4 x + 1 ( x 2 + x + 1 ) 2   > 0   ∀ x ∈ 1 ; 2

Yêu cầu bài toán  ⇔ m ≥ m a x [ 1 ; 2 ]   f ( x ) ⇔ m ≥ - 4 7

Chọn C.