Cho đường thẳng d: y = ax + b (a > 0) . Gọi α là góc tạo bởi tia Ox và d . Khẳng định nào dưới đây là đúng:
A. α = -tan α
B. α = (180 ° - α )
C. α = tan α
D. α = -tan(180 ° - α )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Cho đường thẳng d có phương trình y = ax + b (a ≠ 0)
Gọi α là góc tạo bởi tia Ox và d . Ta có: α = tan α
Đáp án A
Hai đường thẳng đã cho có hệ số góc lần lượt là – 2 < 0 và -5 < 0
Góc tạo bởi hai đường thẳng đã cho với trục Ox là góc tù.
Lai có: -5 < -2 nên β < α
Vậy 90 ° < β < α
Ta có: AB = CD = 3cm; AD = BC = 4cm.
Áp dụng định lí Pyta go vào tam giác ABC ta có:
AC2 = AB2 + BC2 = 25 nên AC = 5
Suy ra: BD = AC= 5.
Gọi I là giao điểm hai đường chéo.
Theo tính chất hình chữ nhật thì
Đáp án A
ĐÁP ÁN B
Đường thẳng d1 có VTPT n 1 → ( 1 ; 3 )
Đường thẳng d2 có VTPT n 2 → ( 2 ; − 1 )
Cosin góc giữa hai đường thẳng đã cho là:
cos α = 1.2 + 3. ( − 1 ) 1 2 + 3 2 . 2 2 + ( − 1 ) 2 = 1 5 2
Lại có; sin 2 α + c os 2 α = 1 ⇔ sin 2 α = 1 − c os 2 α = 1 − 1 50 = 49 50
Do 0 0 < α < 90 0 ⇒ sin α > 0 ⇒ sin α = 7 5 2
ĐÁP ÁN A
Đường thẳng d1 có VTPT n 1 → ( 2 ; − 3 )
Đường thẳng d2 có VTPT n 2 → ( 3 ; 1 )
Cosin góc giữa hai đường thẳng đã cho là:
cos α = 2.3 + ( − 3 ) .1 2 2 + ( − 3 ) 2 . 3 2 + 1 2 = 3 130
Vì 0 < α < π/2 nên sin α > 0, cos α > 0, tan α > 0, cot α > 0.
Đáp án C
Cho đường thẳng d có phương trình y = ax + b (a ≠ 0)
Gọi α là góc tạo bởi tia Ox và d . Ta có: α = tan α