TÌM X,Y BIẾT \(\frac{x-3}{y-2}=\frac{3}{2}\): X-Y=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)
\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn
Bài 2:
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau:
Bạn tự làm nha
Bài 1 :
\(\frac{x}{y}=\frac{5}{3}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )
\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)
\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)
Mà x ; y cùng dấu nên :
\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)
Bài 2 :
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)
\(\frac{x}{10}=3\Rightarrow x=30\)
\(\frac{y}{15}=3\Rightarrow y=45\)
\(\frac{z}{21}=3\Rightarrow z=63\)
Ta có:
\(\frac{x}{3}=\frac{y}{4}\)=>\(\frac{3x}{9}=\frac{4y}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{9}=\frac{4y}{16}=\frac{3x+4y}{9+16}=\frac{5}{25}=\frac{1}{5}\)
=>\(\frac{x}{3}=\frac{1}{5}\)=>\(x=\frac{1}{5}.3=\frac{3}{5}\)
\(\frac{y}{4}=\frac{1}{5}\)=>\(y=\frac{1}{5}.4=\frac{4}{5}\)
Vậy \(x=\frac{3}{5};y=\frac{4}{5}\)
b)Ta có :
\(\frac{x}{4}=\frac{y}{5}\)=>\(\frac{2x}{8}=\frac{3y}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{2x}{8}=\frac{3y}{15}=\frac{2x-3y}{8-15}=\frac{4}{-7}\)
=>\(\frac{x}{4}=\frac{-4}{7}\)=>\(x=\frac{-4}{7}.4=\frac{-16}{7}\)
\(\frac{y}{5}=\frac{-4}{7}\)=>\(x=\frac{-4}{7}.5=\frac{-20}{7}\)
Vậy \(x=\frac{-16}{7};y=\frac{-20}{7}\)
a) \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow3y=4x\Leftrightarrow x=\frac{3y}{4}\)
Thay \(x=\frac{3y}{4}\)vào biểu thức \(3x+4y=5\);ta được : \(\frac{3y}{4}+4y=5\)
\(\Leftrightarrow3y+4y.4=5.4\Leftrightarrow3y+16y=20\Leftrightarrow19y=20\Leftrightarrow y=\frac{20}{19}\)
Vì \(y=\frac{20}{19}\Rightarrow x=\frac{\frac{3.20}{19}}{4}=\frac{15}{19}\)
Vậy .................
nè, không làm thôi ằ nhagg. khó thì đừng gửi câu trả lời làm gì cho mệt nha bạn
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
x+y+3/4 = x+1/2 = y+2/x = x+1+y+2/2+x = x+y+3/x+2
Nếu x+y+3 = 0 => x = -3-y
=> -3-y+1/2 = y+2/-3-y
=> y=-1 hoặc y=-2
=> x=-2 ; y=-1 hoặc x=-1 ; y=-2
Nếu x+y+z khác 0 => x+2 =4 => x=2
=> 2+1/2 = y+2/2
=> y=1
Vậy ............
Tk mk nha
a, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{5x}{15}=\frac{2y}{8}=\frac{5x-2y}{15-8}=\frac{28}{7}=4\)
=> x = 4.3 = 12
y = 4.4 = 16
b, \(x:2=y:\left(-5\right)\Rightarrow\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
=> x = (-1).2 = -2
y = (-1)(-5) = 5
c, \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-10}=\frac{10}{10}=1\)
=> x = 8
y =12
z = 15
Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{2x+3y-z-2-6+3}{9}\)
\(=\frac{50-5}{9}=\frac{45}{9}=5\)
\(\Rightarrow\begin{cases}x-1=5.2=10\\y-2=5.3=15\\z-3=5,4=20\end{cases}\)\(\Rightarrow\begin{cases}x=11\\y=17\\z=23\end{cases}\)
Vậy x = 11; y = 17; z = 23
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-\left(2+6-3\right)}{9}\)
\(=\frac{50-5}{9}=\frac{45}{9}=5\)
+) \(\frac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\)
+) \(\frac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\)
+) \(\frac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\)
Vậy bộ số \(\left(x,y,z\right)\) là \(\left(11,17,23\right)\)
Sửa đề \(\frac{x}{3}=\frac{y}{4}\); \(\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=372\)
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\) (1)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{372}{62}=6\)
Do đó :
\(\frac{x}{15}=6\Rightarrow x=6.15=90\)
\(\frac{y}{20}=6\Rightarrow y=6.20=120\)
\(\frac{z}{28}=6\Rightarrow z=6.28=168\)
Ta có:
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\) và \(2x+3y-z=372\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{2.15+3.20-28}=\frac{372}{62}=6\)
\(\hept{\begin{cases}\frac{x}{15}=6\Rightarrow x=6.15=90\\\frac{y}{20}=6\Rightarrow y=6.20=120\\\frac{z}{28}=6\Rightarrow z=6.28=168\end{cases}}\)
Vậy \(x=90;y=120;z=168\)
a) Ta có: x/2 = y/3 => x/8 = y/12 (1)
y/4 = z/5 => y/12 = z/15 (2)
Từ (1) và (2) => x/8 = y/12 = z/15
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2
x/8 = 2 => x = 2 . 8 = 16
y/12 = 2 => y = 2 . 12 = 24
z/15 = 2 => z = 2 . 15 = 30
Vậy x = 16; y = 24 và z = 30
b) Ta có: x/2 = y/3 => x/10 = y/15 (1)
y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) => x/10 = y/15 = z/12
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7
x/10 = -7 => x = -7 . 10 = -70
y/15 = -7 => y = -7 . 15 = -105
z/12 = -7 => z = -7 . 12 = -84
Vậy x = -70; y = -105 và z = -84
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5
x/2 = 5 => x = 5 . 2 = 10
y/3 = 5 => y = 5 . 3 = 15
z/4 = 5 => z = 5 . 4 = 20
Vậy x = 10; y = 15 và z = 20.
=> \(\frac{x-3}{3}=\frac{y-2}{2}\)
=> \(\frac{x-3}{3}+1=\frac{y-2}{2}+1\)
=> \(\frac{x}{3}=\frac{y}{2}=\frac{x-y}{3-2}=\frac{4}{1}=4\)
=> x = 4.3 =12
=> y = 4.2 = 8
\(\frac{x-3}{y-2}=\frac{3}{2}\)
=>\(\frac{x-3}{3}=\frac{y-2}{2}\)
=>\(\frac{x}{3}-1=\frac{y}{2}-1\)
=>\(\frac{x}{3}=\frac{y}{2}\)
=>2x=3y
Xét x-y =4
=>2x-2y=8
=>3y-2y=8
=>5y=8
=>y=8/5
=>y=1,6=>x=5,6
Chẳng biết có đúng không nốt