Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng với D qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng với D qua AC, F là giao điểm của DN và AC. Chứng minh rằng M đối xứng với N qua A.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tứ giác AEDF là hình chữ nhật
⇒ DE // AC; DF // AB
Trong ∆ ABC, ta có: DB = DC (gt)
Mà DE // AC
Suy ra: AE = EB (tính chất đường trung bình của tam giác)
Lại có: DF // AB và DB = DC
Suy ra: AF = FC (tính chất đường trung bình của tam giác)
Xét tứ giác ADBM, ta có: AE = EB (chứng minh trên)
ED = EM (vì AB là trung trực DM)
Suy ra tứ giác ADBM là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)
Mặt khác: AB ⊥ DM
Vậy hình bình hành ADBM là hình thoi (vì có hai đường chéo vuông góc)
Xét tứ giác ADCN, ta có: AF = FC (chứng minh trên)
DF = FN (vì AC là đường trung trực DN)
Suy ra tứ giác ADCN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường).
Lại có: AC ⊥ DN
Vậy hình bình hành ADCN là hình thoi (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
Hình chữ nhật AEDF trở thành hình vuông khi AE = AF
Ta có: AE = 1/2 AB; AF = 1/2 AC
Nên AE = AF ⇒ AB = AC
Vậy nếu ∆ ABC vuông cân tại A thì tứ giác AEDF là hình vuông.
Điểm M và điểm D đối xứng qua trục AB
Suy ra AB là đường trung trực của đoạn thẳng MD
⇒ AB ⊥ DM ⇒ ∠ (AED) = 90 0
Điểm D và điểm N đối xứng qua trục AC ⇒ AC là đường trung trực của đoạn thẳng DN ⇒ AC ⊥ DN ⇒ ∠ (AFD) = 90 0
Mà ∠ (EAF) = 90 0 (gt). Vậy tứ giác AEDF là hình chữ nhật (vì có 3 góc vuông).
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
a: D đối xứng với M qua AB
nên DM vuông góc với AB tại trung điểm của DM
=>E là trung điểm của DM và AB là phân giác của góc DAM(2)
=>AD=AM; BD=BM
mà DA=DB
nên AD=AM=BD=BM
D đối xứng với N qua AC
nên AC vuông góc với DN tại trung điểm của DN
=>AC là phân giác của góc NAD(1) và F là trung điểm của DN
Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
nên AEDF là hình chữ nhật
b: Từ (1), (2) suy ra góc MAN=2*90=180 độ
=>M,A,N thẳng hàng
mà AM=AN
nên A là trung điểm của MN
c: Để AEDF là hình vuông thì AD là phân giác của góc FAE
mà AD là trung tuyến ứng với BC
nên ΔABC cân tại A
=>AB=AC
Tứ giác AEDF là hình chữ nhật
⇒ DE // AC; DF // AB
Trong ∆ ABC, ta có: DB = DC (gt)
Mà DE // AC
Suy ra: AE = EB (tính chất đường trung bình của tam giác)
Lại có: DF // AB và DB = DC
Suy ra: AF = FC (tính chất đường trung bình của tam giác)
Xét tứ giác ADBM, ta có: AE = EB (cmt)
ED = EM (vì AB là trung trực DM)
Suy ra tứ giác ADBM là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)
Mặt khác: AB ⊥ DM
Vậy hình bình hành ADBM là hình thoi (vì có hai đường chéo vuông góc)
Xét tứ giác ADCN, ta có: AF = FC (cmt)
DF = FN (vì AC là đường trung trực DN)
Suy ra tứ giác ADCN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường).
Lại có: AC ⊥ DN
Vậy hình bình hành ADCN là hình thoi (vì có hai đường chéo cắt nhau)
1.\(5x^2-10xy+5y^2-20z^2\)
=\(5\left(x^2-2xy+y^2-4z^2\right)\)
=\(5\left(x-y\right)^2-\left(2z\right)^2\)
=\(5\left(x-y-2z\right)\left(x-y+2z\right)\)
Bài 1:
Ta có: \(5x^2-10xy+5y^2-20z^2\)
\(=5\left(x^2-2xy+y^2-4z^2\right)\)
\(=5\cdot\left[\left(x^2-2xy+y^2\right)-\left(2z\right)^2\right]\)
\(=5\cdot\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
Bài 2:
a) Ta có: M đối xứng với D qua AB(gt)
nên AB là đường trung trực của MD
⇔AB vuông góc với MD tại trung điểm của MD
mà AB cắt MD tại E(gt)
nên E là trung điểm của MD và ME⊥AB
Ta có: ME⊥AB(cmt)
AC⊥AB(ΔABC vuông tại A)
Do đó: ME//AC(Định lí 1 từ vuông góc tới song song)
Xét ΔABC có
M là trung điểm của BC(gt)
ME//AC(cmt)
Do đó: E là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)
Xét ΔABC có
M là trung điểm của BC(gt)
E là trung điểm của AB(cmt)
Do đó: ME là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒ME//AC và \(ME=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
hay ME//AF
Ta có: M và N đối xứng nhau qua AC(gt)
nên AC là đường trung trực của MN
hay AC vuông góc với MN tại trung điểm của MN
mà AC cắt MN tại F(gt)
nên MF⊥AC và F là trung điểm của MN
Ta có: MF⊥AC(cmt)
AB⊥AC(cmt)
Do đó: MF//AB(Định lí 1 từ vuông góc tới song song)
Xét ΔCAB có
M là trung điểm của BC(gt)
MF//AB(cmt)
Do đó: F là trung điểm của AC(Định lí 1 đường trung bình của tam giác)
⇒\(AF=\dfrac{AC}{2}\)(2)
Từ (1) và (2) suy ra ME=AF
Xét tứ giác AFME có
ME//AF(cmt)
ME=AF(cmt)
Do đó: AFME là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AFME có \(\widehat{FAE}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)
nên AFME là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Xét tứ giác ADBM có
E là trung điểm của đường chéo AB(cmt)
E là trung điểm của đường chéo MD(cmt)
Do đó: ADBM là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ADBM có AB⊥MD(cmt)
nên ADBM là hình thoi(Dấu hiệu nhận biết hình thoi)
Tứ giác ADBM là hình thoi ⇒ AM // DB và AM = AD
Hay AM // BC và AM = AD (1)
Tứ giác ADCN là hình thoi ⇒ AN // DC và AD = AN
Hay AN // BC và AN = AD (2)
Từ (1) và (2) suy ra: AM trùng với AN hay M, A, N thẳng hàng
Và AM = AN nên A là trung điểm của MN
Vậy điểm M và điểm N đối xứng qua điểm A.