K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Giải bài 50 trang 125 SGK Toán 8 Tập 2 | Giải toán lớp 8

24 tháng 4 2017

a) Diện tích đáy của hình chóp đều:

S = BC 2 = 6,52 = 42,25 (m2)

Thể tích hình chóp đều:

V = \(\dfrac{1}{3}\). S.h = \(\dfrac{1}{3}\). 42,25 . 12 ≈ 169 (cm3)

b) Các mặt xung quanh là những hình thang cân đáy nhỏ 2cm, đáy lớn 4cm, chiều cao 3,5cm. Nên:

Sxq = \(4.\dfrac{\left(2+4\right).3,5}{2}=42\left(cm^2\right)\) = 42 (cm2)

25 tháng 6 2019

Xét hình chóp cụt đều ABCD.A'B'C'D' như hình bs.19.

Gọi M, M' thứ tự là trung điểm của BC, B'C'. Khi đó MM' là đường cao của hình thang cân BCC'B'.

Do đó diện tích xung quanh của hình chóp cụt đều là:

S x q  = 4.(a+b)/2.MM′=(2a+2b).MM′

Từ giả thiết ta có:

(2a+2b).MM′= a 2 + b 2  Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Dễ thấy OM // O'M' nên OM và O'M' xác định mặt phẳng (OMM'O'). Trong mặt phẳng (OMM'O'), kẻ MH ⊥ O'M'. Khi đó: HM' = O'M' – O'H = (b−a)/2

Trong tam giác vuông MHM' ta có: M M ' 2 = M H 2 + H M ' 2 = h + b - a / 2 2  (2)

Từ (1) và (2) suy ra :

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

10 tháng 5 2017

Xét hình chóp cụt đều ABCD.AB'C'D'

Gọi M ,M' thứ tự là trung điểm của BC , B'C' . Khi đó MM' là đường cao của hình thang cân BCC'B' . Do đó diện tích xung quanh của hình chóp cụt đều là :

\(S_{xq}=4.\dfrac{a+b}{2}.MM'=\left(2a+2b\right).MM'\)

Từ giả thiết , ta có :

\(\left(2a+2b\right).MM'=a^2+b^2hayMM'=\dfrac{a^2+b^2}{2\left(a+b\right)}\left(1\right)\)

Dễ thấy OM // O'M' nên OM và O'M' xác định mặt phẳng (OMM'O') . Trong mặt phẳng (OMM'O') , kẻ MH \(\perp\) O'M' . Khi đó : \(HM'=O'M'-O'H=\dfrac{b-a}{2}\)

Trong tam giác vuông MHM' ta có :

\(MM'^2=MH^2+HM'^2=h^2+\left(\dfrac{b-a}{2}\right)^2\left(2\right)\)

Từ (1) và (2) suy ra :

\(h^2+\left(\dfrac{b-a}{2}\right)^2=\dfrac{\left(a^2+b^2\right)^2}{4\left(a+b\right)^2}\)

\(\Rightarrow h^2=\dfrac{\left(a^2+b^2\right)^2-\left(b^2-a^2\right)^2}{4\left(a+b\right)^2}=\dfrac{a^2b^2}{\left(a+b\right)^2}\)

Vậy \(h=\dfrac{ab}{a+b}\)

Sxq=16*4*17/2=544cm2

Stp=544+16^2=800cm2

V=1/3*16^2*15=1280cm3

31 tháng 7 2023

Nữa chu vi đáy của hình chóp đều:

\(16\cdot4:2=32\left(cm\right)\)

Diện tích xung quanh của hình chóp đều:

\(S_{xq}=32\cdot17=544\left(cm^2\right)\)

Diện tích mặt đáy của hình chóp đều:

\(S_đ=16^2=256\left(cm^2\right)\)

Diện tích toàn phần của hình chóp đều:

\(S_{tp}=S_đ+S_{xq}=544+256=800\left(cm^2\right)\)

Thể tích của hình chóp đều:
\(V=\dfrac{1}{3}\cdot256\cdot15=1280\left(cm^3\right)\)

2 tháng 2 2018

Diện rích một mặt bên là hình thang bằng:

S =1/2 (5 +10).5=37,5 ( c m 2 )

Diện tích xung quanh của hình chóp

cụt đều là: S x q =4.3,75 = 150 ( c m 2 )

31 tháng 7 2023

Nữa chu vi đáy của hình chóp đều:

\(8\cdot4:2=16\left(cm\right)\)

Diện tích xung quanh của hình chóp đều:
\(S_{xq}=16\cdot5=80\left(cm^2\right)\)

Diện tích đáy của hình chóp đều:

\(S_đ=8^2=64\left(cm^2\right)\)

Diện tích toàn phần của hình chóp đều:

\(S_{tp}=S_đ+S_{xq}=64+80=144\left(cm^2\right)\)

Sxq=1/2*8*4*5=80cm2

Stp=80+8^2=144cm2

29 tháng 3 2018

Một mặt bên của hình chóp cụt là một hình thang có hai đáy là a và 2a; đường cao bằng a.

Diện tích mặt bên là:

S = (a+ 2a): 2.a =3/2 a 2 (đvtt)

Diện tích xung quanh hình nón cụt:

S x q  = 4.3/2  a 2  = 6 a 2  (đvtt)

11 tháng 1 2017