K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Trên tia đối của tia CD lấy điểm M sao cho CM = AK

Ta có: AK + CE = CM + CE = EM (1)

Xét ∆ ABK và  ∆ CBM, ta có:

AB = CB (gt)

∠ A = ∠ C = 90 0

AK = CM (theo cách vẽ)

Suy ra:  ∆ ABK = CBM (c.g.c)

⇒  ∠ B 1  =  ∠ B 4  (2)

Lại có:  ∠ B 1 = ∠ B 2  ( do BK là tia phân giác của ABE)

Suy ra:  ∠ B 1  =  ∠ B 2  =  ∠ B 4

Mà  ∠ (KBC) =  90 0  -  ∠ B 1  (3)

Tam giác CBM vuông tại C nên:  ∠ M =  90 0  -  ∠ B 4  (4)

Từ (2), (3) và (4) suy ra:  ∠ (KBC) =  ∠ M (5)

Hay  ∠ B 2 +  ∠ B 3  =  ∠ M

⇒  ∠ B 4  +  ∠ B 3  =  ∠ M( vì  ∠ B 2  =  ∠ B 4  )

Hay:  ∠ (EBM) =  ∠ M

⇒  ∆ EBM cân tại E ⇒ EM = BE. (6)

Từ (1) và (6) suy ra: AK + CE = BE.

13 tháng 11 2021

tham khảo

Trên tia đối tia CD lấy điểm M sao cho CM = AK

Ta có: AK + CE = CM + CE = EM (*)

Xét ∆ ABK và ∆ CBM:

AB = CB (gt)

ˆA=ˆC=900

AK = CM (theo cách vẽ)

Do đó: ∆ ABK = ∆ CBM (c.g.c)

⇒ˆB1=ˆB4

(1)

ˆKBC=900–ˆB1

(2)

Trong tam giác CBM vuông tại C.

ˆM=900–ˆB4

(3)

Từ (1), (2) và (3) suy ra: ˆKBC=ˆM

(4)

ˆKBC=ˆB2+ˆB3

 mà  ˆB1=ˆB2

(gt)

ˆB1=ˆB4

(chứng minh trên)

Suy ra: ˆB2=ˆB4⇒ˆB2+ˆB3=ˆB3+ˆB4

hay ˆKBC=ˆEBM

(5)

Từ (4) và (5) suy ra: ˆEBM=ˆM

⇒ ∆ EBM cân tại E ⇒ EM = BE (**)

Từ (*) và (**) suy ra: AK + CE = BE

30 tháng 6 2017

Hình vuông

2 tháng 10 2016

trên tia đối của AD lấy N sao cho AN = CE 
ta có: 
Δ BCE = Δ BAN (2 cạnh góc vuông = nhau) 
=> CBE^ = ABN^ (1) 
BK là phân giác của ABE^ nên: 
KBE^ = KBA^ (2) 
(1) + (2) được: 
CBE^ + KBE^ = ABN^ + KBA^ 
=> CBK^ = KBN^ (*) 
mà: CBK^ = BKN^ (**) ( so le trong) 
(*) và (**) => BKN^ = KBN^ => BNK là tam giác cân tại N 
=> NB = NK 
=> NB = AN + AK = CE + AK (3) 
do: Δ BCE = Δ BAN => BE = NB (4) 
(3) và (4) => CE + AK = BE

8 tháng 12 2018

trên tia đối của AD lấy N sao cho AN = CE 
ta có: 
Δ BCE = Δ BAN (2 cạnh góc vuông = nhau) 
=> CBE^ = ABN^ (1) 
BK là phân giác của ABE^ nên: 
KBE^ = KBA^ (2) 
(1) + (2) được: 
CBE^ + KBE^ = ABN^ + KBA^ 
=> CBK^ = KBN^ (*) 
mà: CBK^ = BKN^ (**) ( so le trong) 
(*) và (**) => BKN^ = KBN^ => BNK là tam giác cân tại N 
=> NB = NK 
=> NB = AN + AK = CE + AK (3) 
do: Δ BCE = Δ BAN => BE = NB (4) 
(3) và (4) => CE + AK = BE

6 tháng 8 2015

ta có: 
Δ BCE = Δ BAN (2 cạnh góc vuông = nhau) 
=> CBE^ = ABN^ (1) 
BK là phân giác của ABE^ nên: 
KBE^ = KBA^ (2) 
(1) + (2) được: 
CBE^ + KBE^ = ABN^ + KBA^ 
=> CBK^ = KBN^ (*) 
mà: CBK^ = BKN^ (**) ( so le trong) 
(*) và (**) => BKN^ = KBN^ => BNK là tam giác cân tại N 
=> NB = NK 
=> NB = AN + AK = CE + AK (3) 
do: Δ BCE = Δ BAN => BE = NB (4) 
(3) và (4) => CE + AK = BE
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
li-ke cho minhf nhes bn Nguyễn Thị Thùy Trang

7 tháng 1 2017

Trên tia đối của AD lấy N sao cho AN = CE
Ta có:
Δ BCE = Δ BAN (2 cạnh góc vuông = nhau)
=> CBE= ABN (1)
BK là phân giác của ABE nên:
KBE = KBA (2)
(1) + (2) được:
CBE + KBE = ABN + KBA
=> CBK = KBN(3)
mà: CBK= BKN(4) ( so le trong)
(3) và (4) => BKN = KBN => BNK là tam giác cân tại N
=> NB = NK
=> NB = AN + AK = CE + AK (3)
do: Δ BCE = Δ BAN => BE = NB (4)
(5) và (6) => CE + AK = BE

7 tháng 1 2017

gái

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm