K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

a) Hàm số xác định khi:

4 x  – 2 > 0 ⇔ 2 2 x  > 2 ⇔ x > 1/2

Vậy tập xác định là D = (1/2; + ∞ )

b) D = (−2/3; 1)

c) logx + log(x + 2) ≥ 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy tập xác định là D = [−1 + 2 ; + ∞ )

d) Tương tự câu c, D = [ 2 ; + ∞ ).

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Biểu thức \(4{x^2} - 1\) có nghĩa với mọi \(x \in \mathbb{R}\)

Vậy tập xác định của hàm số này là \(D = \mathbb{R}\)

b) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \({x^2} + 1 \ne 0,\)tức là với mọi \(x \in \mathbb{R}\)

Vậy tập xác định của hàm số này là \(D = \mathbb{R}\)

c) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \(\frac{1}{x}\) có nghĩa, tức là khi \(x \ne 0,\)

Vậy tập xác định của hàm số này là \(D = \mathbb{R}{\rm{\backslash }}\{ 0\} \)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(a,4^x-2^{x+1}\ge0\\ \Leftrightarrow2^{x+1}\le2^{2x}\\ \Leftrightarrow x+1\le2x\\ \Leftrightarrow x\ge1\)

Tập xác định của hàm số là D = \([1;+\infty)\)

\(b,\left\{{}\begin{matrix}x>0\\1-ln\left(x\right)>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x>0\\ln\left(x\right)< 1\end{matrix}\right.\\ \Leftrightarrow0< x< e\)

Tập xác định của hàm số là \(\left(0;e\right)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \( - 5x + 3 \ge 0,\)tức là khi \(x \le \frac{3}{5}.\)

Vậy tập xác định của hàm số này là \(D = ( - \infty ;\frac{3}{5}]\)

b) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \(x + 3 \ne 0,\)tức là khi \(x \ne  - 3\)

Vậy tập xác định của hàm số này là \(D = \mathbb{R}\backslash \left\{ { - 3} \right\}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

a, \(y=log\left|x+3\right|\) có nghĩa khi \(\left|x+3\right|>0\)

Mà \(\left|x+3\right|\ge0\forall x\in R\)

\(\Rightarrow\) \(\left|x+3\right|>0\) khi \(x\ne-3\)

Vậy tập xác định của hàm số là D = R \ {-3}.

b, \(y=ln\left(4-x^2\right)\) có nghĩa khi \(4-x^2>0\)

\(\Rightarrow x^2< 4\\ \Leftrightarrow-2< x< 2\)

Vậy tập xác định của hàm số là D = (-2;2).

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Tập xác đinh của hàm số \(y = \sqrt {2x - 1}  + \sqrt {5 - x} \) là:

\(\left\{ {\begin{array}{*{20}{c}}{2x - 1 \ge 0}\\{5 - x \ge 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x \ge \frac{1}{2}}\\{x \le 5}\end{array}} \right.} \right.\,\, \Leftrightarrow \,\,\frac{1}{2} \le x \le 5\)

Vậy tập xác định của hàm số là: \(D = \left[ {\frac{1}{2};5} \right].\)

b) Tập xác định của hàm số \(y = \frac{1}{{\sqrt {x - 1} }}\) là: \(x - 1 > 0\,\, \Leftrightarrow \,\,x > 1.\)

Vậy tập xác định của hàm số là: \(D = \left( {1; + \infty } \right).\)

2 tháng 9 2021

a)R

b)R

c)\(x\)\(\ne\)\(\pm\)\(1\)

d)\(x<1\)

c: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

d: ĐKXĐ: \(x\le1\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \(2x + 7 \ge 0,\)tức là khi \(x \ge \frac{{ - 7}}{2}.\)

Vậy tập xác định của hàm số này là \(D = \left[ { - \frac{7}{2}; + \infty )} \right.\)

b) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \({x^2} - 3x + 2 \ne 0,\)tức là khi \(x \ne 2,x \ne 1.\)

Vậy tập xác định của hàm số này là \(D = \mathbb{R}\backslash \left\{ {1;2} \right\}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Biểu thức \(\frac{{1 - \cos x}}{{\sin x}}\) có nghĩa khi \(\sin x \ne 0\), tức là \(x \ne k\pi \;\left( {k\; \in \;\mathbb{Z}} \right)\).

Vậy tập xác định của hàm số đã cho là \(\mathbb{R}/{\rm{\{ }}k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}\} \;\)

b) Biểu thức \(\sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \) có nghĩa khi \(\left\{ {\begin{array}{*{20}{c}}{\frac{{1 + \cos x}}{{2 - \cos x}} \ge 0}\\{2 - \cos x \ne 0}\end{array}} \right.\) 

Vì \( - 1 \le \cos x \le 1 ,\forall x \in \mathbb{R}\)

 Vậy tập xác định của hàm số là \(D = \mathbb{R}\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) \(y = \frac{1}{{{x^2} - x}}\) xác định \( \Leftrightarrow {x^2} - x \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne 1\end{array} \right.\)

Tập xác định \(D = \mathbb{R}\backslash \left\{ {0;1} \right\}\)

b) \(y = \sqrt {{x^2} - 4x + 3} \) xác định \( \Leftrightarrow {x^2} - 4x + 3 \ge 0 \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\x \le 1\end{array} \right.\)

Tập xác định \(D = \left( { - \infty ;1} \right] \cup \left[ {3; + \infty } \right)\)

c) \(y = \frac{1}{{\sqrt {x - 1} }}\) xác định \( \Leftrightarrow x - 1 > 0 \Leftrightarrow x > 1\)

Tập xác định \(D = \left( {1; + \infty } \right)\)