Số p là số có 6 chữ số giống nhau, số q có 4 chữ số giống nhau. Khi p:q=233 và số dư r nào đó. Nếu bỏ 1 chữ số của p và 1 chữ số của q thì thuơng ko đổi và số dư giảm 100. Số q là bao nhiêu?
Các bạn giải đầy đủ giúp mình với, mình đang gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi Q có dạng bbbb (b<4) vì nếu b >4 thì 233*4444=1 số có 7 chữ số).
Vậy bạn chỉ cần thay b=1 (hoặc =2, hoặc = 3)
ta có: 1111*233=258863---> P là 333333 nhưng P-258863 =74470 >1111 (loại)
Tương tự với b =2(loại)
b=3 --->3333*233=776589--> P=777777-->số dư=P-776589=1188 (lấy vì 1188<3333)
(Ở bài tập này bạn cần chú ý số dư luôn nhỏ hơn số bị chia thì phép chia mới đúng)
Vậy số dư là 1188.
Gọi Q có dạng bbbb (b<4) vì nếu b >4 thì 233 x 4444 là một số có 7 chữ số.
Vậy b=1 (hoặc =2, hoặc = 3)
Với b = 1
Ta có: 1111 x 233=258863 Suy ra P là 333333 nhưng P-258863 =74470 >1111 (loại)
Tương tự với b =2(loại)
Với b=3 Ta có :3333 x 233=776589 Suy ra P=777777 và số dư=P-776589=1188 (lấy vì 1188<3333)
Vậy Q = 3333
tick cho mình nhé
Gọi Q có dạng bbbb (b<4) vì nếu b >4 thì 233 x 4444 là mộtsố có 7 chữ số.
Vậy b=1 (hoặc =2, hoặc = 3)
Với b = 1
Ta có: 1111 x 233=258863
Suy ra P là 333333 nhưng P-258863 =74470 >1111 (loại)
Tương tự với b =2(loại)
Với b=3
Ta có :3333 x 233=776589
Suy ra P=777777 và số dư=P-776589=1188 (lấy vì 1188<3333)
Vậy số dư là 1188.
Gọi Q có dạng bbbb (b<4) vì nếu b >4 thì 233 x 4444 là một số có 7 chữ số.
Vậy b=1 (hoặc =2, hoặc = 3)
Với b = 1
Ta có: 1111 x 233=258863 Suy ra P là 333333 nhưng P-258863 =74470 >1111 (loại)
Tương tự với b =2(loại)
Với b=3 Ta có :3333 x 233=776589 Suy ra P=777777 và số dư=P-776589=1188 (lấy vì 1188<3333)
Vậy Q = 3333
Gọi Q có dạng bbbb (b<4) vì nếu b >4 thì 233 x 4444 là một số có 7 chữ số.
Vậy b=1 (hoặc =2, hoặc = 3)
Với b = 1
Ta có: 1111 x 233=258863 Suy ra P là 333333 nhưng P-258863 =74470 >1111 (loại)
Tương tự với b =2(loại)
Với b=3 Ta có :3333 x 233=776589 Suy ra P=777777 và số dư=P-776589=1188 (lấy vì 1188<3333)
Vậy Q = 3333