Cho tam giác ABC vuông tại A với AC = 4cm, BC = 6cm. Kẻ tia Cx vuông góc với BC (tia Cx và điểm A nằm khác phía so với đường thẳng BC). Trên tia Cx lấy điểm D sao cho BD = 9cm. Chứng minh BD song song với AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hai tam giác vuông ABC và CDB, ta có:
∠ (BAC) = ∠ (DCB) = 90 0 (1)
Mà:
Suy ra: (2)
Từ (1) và (2) suy ra: △ ABC đồng dạng △ CDB (cạnh huyền và cạnh góc vuông tỉ lệ)
Suy ra: ∠ (ACB) = ∠ (CBD)
⇒ BD//AC ( hai góc ở vị trí so le trong bằng nhau )
áp dụng định lý pitago vào tam giác vuông ABC:
\(AB^2\)+\(AC^2_{ }=BC^2\)
=>\(AB^2=BC^2-AC^2\)
<=>\(AB^2=6^2-4^2=20=>AB=\sqrt[]{20}\)
ÁP dụng định lý pitago vào tam giác vuông BCD
\(BC^2+DC^2=BD^2=>DC^2=BD^2-BC^2=9^2-6^2=45=>DC=\sqrt[]{45}\)
TA CÓ
\(\dfrac{AB}{CD}=\dfrac{\sqrt[]{20}}{\sqrt[]{45}}=\dfrac{2}{3}\) (1)
\(\dfrac{DC}{BC}=\dfrac{6}{9}=\dfrac{2}{3}\) (2)
TỪ 1 và 2 => \(\Delta ABC\sim\Delta BCD\)
=>\(\widehat{DBC}=\widehat{ACB}\) mà 2 góc này ở vị trí so le trong => BD//AC
a: Xét ΔBAC vuông tại A và ΔDCB vuông tại C có
BA/DC=AC/CB
=>ΔBAC đồng dạng với ΔDCB
b: ΔBAC đồng dạng với ΔDCB
=>góc ACB=góc CBD
=>AC//BD
2: Xét tứ giác ABCD có
AB//CD
AB=CD
Do đó: ABCD là hình bình hành
Suy ra: AD//BC