B=3+32+33+34+35+...+32015+32016 chứng tỏ rằng chia hết cho 4 và 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)
\(=13\left(1+...+3^7\right)⋮13\)
\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)
\(S=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+\left(3^6+3^7\right)+\left(3^8+3^9\right)\)
\(S=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+3^8\left(1+3\right)\)
\(S=4+3^2.4+3^4.4+3^6.4+3^8.4\)
\(S=4\left(3^2+3^4+3^6+3^8\right)\)
\(4⋮4\\ \Rightarrow4\left(3^2+3^4+3^6+3^8\right)⋮4\\ \Rightarrow S⋮4\)
\(S=1.\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)
\(S=4x\left(1+3^2+...+3^8\right)\)
Vì 4 chia hết cho 4 nên S chia hết cho 4
\(B=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\\=(3+3^2)+(3^3+3^4)+(3^5+3^6)+(3^7+3^8)\\=3\cdot(1+3)+3^3\cdot(1+3)+3^5\cdot(1+3)+3^7\cdot(1+3)\\=3\cdot4+3^3\cdot4+3^5\cdot4+3^7\cdot4\\=4\cdot(3+3^3+3^5+3^7)\)
Vì \(4\cdot(3+3^3+3^5+3^7) \vdots 4\)
nên \(B\vdots4\).
`#3107.101107`
\(B=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+\left(3^7+3^8\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+3^5\left(1+3\right)+3^7\left(1+3\right)\)
\(=\left(1+3\right)\left(3+3^3+3^5+3^7\right)\)
\(=4\left(3+3^3+3^5+3^7\right)\)
Vì \(4\left(3^3+3^5+3^7\right)\) $\vdots 4$
`\Rightarrow B \vdots 4`
Vậy, `B \vdots 4.`
Đặt A = 3² + 3³ + 3⁴ + ... + 3⁹⁹
= 3² + 3³ + (3⁴ + 3⁵ + 3⁶) + (3⁷ + 3⁸ + 3⁹) + ... + (3⁹⁷ + 3⁹⁸ + 3⁹⁹)
= 36 + 3⁴.(1 + 3 + 3²) + 3⁷.(1 + 3 + 3²) + ... + 3⁹⁷.(1 + 3 + 3²)
= 36 + 3⁴.13 + 3⁷.13 + ... + 3⁹⁷.13
= 36 + 13.(3⁴ + 3⁷ + ... + 3⁹⁷)
Do 36 không chia hết cho 13
13.(3⁴ + 3⁷ + ... + 3⁹⁷) ⋮ 13
⇒ 36 + 13.(3⁴ + 3⁷ + ... + 3⁹⁷) không chia hết cho 13
⇒ A không chia hết cho 13
Em xem lại đề nhé, có thể em viết thiếu số 3 rồi
`#3107.101107`
\(A=1+3+3^2+3^3+...+3^{101}\)
$A = (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ... + (3^{99} + 3^{100} + 3^{101}$
$A = (1 + 3 + 3^2) + 3^3 (1 + 3 + 3^2) + ... + 3^{99}(1 + 3 + 3^2)$
$A = (1 + 3 + 3^2)(1 + 3^3 + ... + 3^{99})$
$A = 13(1 + 3^3 + ... + 3^{99})$
Vì `13(1 + 3^3 + ... + 3^{99}) \vdots 13`
`\Rightarrow A \vdots 13`
Vậy, `A \vdots 13.`
\(A=1+3+3^2+3^3+3^4+3^5+...+3^{101}\\=(1+3+3^2)+(3^3+3^4+3^5)+(3^6+3^7+3^8)+...+(3^{99}+3^{100}+3^{101})\\=13+3^3\cdot(1+3+3^2)+3^6\cdot(1+3+3^2)+...+3^{99}\cdot(1+3+3^2)\\=13+3^3\cdot13+3^6\cdot13+...+3^{99}\cdot13\\=13\cdot(1+3^3+3^6+...+3^{99})\)
Vì \(13\cdot(1+3^3+3^6...+3^{99}\vdots13\)
nên \(A\vdots13\)
\(\text{#}Toru\)
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
Chia đề bài thành 2 phần như sau:
Phần thứ nhất: Chứng tỏ B chia hết cho 4. Ta có:
\(B=3+3^2+3^3+3^4+3^5+...+3^{2015}+3^{2016}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{2015}+3^{2016}\right)\)
\(B=\left(3\cdot1+3.3\right)+\left(3^3\cdot1+3^3\cdot3\right)+\left(3^5\cdot1+3^5\cdot3\right)+...+\left(3^{2015}\cdot1+3^{2015}\cdot3\right)\)
\(B=3\left(1+3\right)+3^3\left(1+3\right)+3^5\left(1+3\right)+...+3^{2015}\left(1+3\right)\)
\(B=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{2015}\cdot4\)
\(B=4\left(3+3^3+3^5+...+3^{2015}\right)\)
Do B có một thừa số là 4 nên B chia hết cho 4. Đã chứng minh được phần thứ nhất.
Phần thứ hai: Chứng tỏ B chia hết cho 13. Ta có:
\(B=3+3^2+3^3+3^4+3^5+...+3^{2015}+3^{2016}\)
\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2014}+3^{2015}+3^{2016}\right)\)
\(B=\left(3\cdot1+3\cdot3+3\cdot9\right)+\left(3^4\cdot1+3^4\cdot3+3^4\cdot9\right)+...+\left(3^{2014}\cdot1+3^{2014}\cdot3+3^{2014}\cdot9\right)\)
\(B=3\left(1+3+9\right)+3^4\left(1+3+9\right)+...+3^{2014}\left(1+3+9\right)\)
\(B=3\cdot13+3^4\cdot13+...+3^{2014}\cdot13\)
\(B=13\left(3+3^4+...+3^{2014}\right)\)
Do B có thừa số 13 nên B chia hết cho 13. Phần thứ hai đã được chứng minh.
Qua hai phần trên, ta kết luận: B chia hết cho 4 và 13.
B = 3+3^2+3^3+3^4+..+3^2015+3^2016
=>B=(3+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^2015+3^2016)
=>B=12+3^2(3+3^2)+3^4+(3+3^2)+...+3^2014(3+3^2)
=>B=12+3^2.12+3^4.12+...+3^2014.12
=>B=12(1+3^2+3^4+...+3^2014)
=>?B=4.3.(1+3^2+3^4+...+3^2014)=>B chia hết cho 4
B=3+3^2+3^3+3^4+...+3^2015+3^2016
=>B=(3+3^2+3^3)+(3^4+3^5+3^6)+(3^7+3^8+3^9)+...+(3^2014+3^2015+3^2016)
=>B=39+3^3(3+3^2+3^3)+3^3(3+3^2+3^3)+3^6(3+3^2+3^3)+...+3^2013(3+3^2+3^3)
=>B=39+3^3.39+3^6.39+...+3^2013.39
=>B=39(1+3^3+3^6+...+3^2013)
=>b=13.3.(1+3^3+3^6+....+3^2013)=>B chia hết cho 13