Có 8 viên bi đỏ giống nhau và 8 viên bi đen giống nhau. Có bao nhiêu cách xếp các viên bi đó thành một dãy sao cho hai viên bi cùng mầu không được ở cạnh nhau ?
A. 16.
B. 64.
C. 2.
D. 2.8!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là C
Số các hoán vị về màu bi khi xếp thành dãy là 3!
Số cách xếp 3 viên bi đen khác nhau thành dãy là 3!
Số cách xếp 4 viên bi đỏ khác nhau thành dãy là 4!
Số cách xếp 5 viên bi xanh khác nhau thành dãy là 5!
Số cách xếp các viên bi trên thành một dãy sao cho các viên bi cùng màu ở cạnh nhau là 3!. 3!. 4!. 5! = 103680 cách.
Có 2 kiểu xếp thỏa mãn là: Đỏ-Đen-Đỏ-Đen-Đỏ-Đen-Đỏ-Đen hoặc Đen-Đỏ-Đen-Đỏ-Đen-Đỏ-Đen-Đỏ
Ở mỗi kiểu xếp, 4 viên bi đỏ có \(4!\) cách xếp và 4 viên bi đen có \(4!\) cách xếp
Do đó có: \(2.4!.4!=1152\) cách xếp thỏa mãn
Xếp 6 viên bi xanh có 6! cách xếp, khi đó 6 viên bi xanh sẽ tạo thành 7 chỗ trống.
Xếp 4 viên bi vàng vào 7 chỗ trống đó là A 7 4 cách.
Do đó có A 7 4 . 6 ! = 604800 cách xếp.
Chọn A.
Xếp 5 thẻ đen có 5! cách xếp, khi đó 5 thẻ đen tạo thành 6 chỗ trống.
Xếp 3 thẻ trắng vào 6 chỗ trống thì không có 2 thẻ trắng nào cạnh nhau: có cách.
Do đó có cách xếp.
Chọn D.
Đáp án : C
Để xếp bi thỏa mãn yêu cầu thì các viên bi phải được xếp xen kẽ nhau.
Phương án 1: Vị trí đầu tiên là viên bi đỏ, sau đó xếp tiếp các viên bi còn lại. Vì yêu cầu xếp xen kẽ nên chỉ có 1 cách xếp trong tình huống này.
Phương án 2: Vị trí đầu tiên là viên bi đen. Tương tự như trên, chỉ có 1 cách xếp.
Vậy theo quy tắc cộng, số cách xếp bi thỏa mãn là 1 + 1 = 2 cách.