tất cả các nghiệm phương trình
\(\sqrt[3]{x-5}+\sqrt[3]{2x-1}-\sqrt[3]{3x+2}=-2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
\(\sqrt{9x^2+33x+28}+5\sqrt{4x-3}=5\sqrt{3x+4}+\sqrt{12x^2+19x-21}\)
\(\Leftrightarrow\sqrt{\left(3x+4\right)\left(3x+7\right)}+5\sqrt{4x-3}=5\sqrt{3x+4}+\sqrt{\left(3x+7\right)\left(4x-3\right)}\)
\(\Leftrightarrow\sqrt{\left(3x+4\right)\left(3x+7\right)}-5\sqrt{3x+4}=\sqrt{\left(3x+7\right)\left(4x-3\right)}-5\sqrt{4x-3}\)
\(\Leftrightarrow\sqrt{3x+4}\left(\sqrt{3x+7}-5\right)=\sqrt{4x-3}\left(\sqrt{3x+7}-5\right)\)
\(\Leftrightarrow\sqrt{3x+4}\left(\sqrt{3x+7}-5\right)-\sqrt{4x-3}\left(\sqrt{3x+7}-5\right)=0\)
\(\Leftrightarrow\left(\sqrt{3x+7}-5\right)\left(\sqrt{3x+4}-\sqrt{4x-3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{3x+7}=5\\\sqrt{3x+4}=\sqrt{4x-3}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}3x+7=25\\3x+4=4x-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=7\end{cases}}\) (thỏa mãn). Suy ra tổng các nghiệm của pt là \(6+7=13\)
Lập lên có
\(\left(\sqrt[3]{2x+4}-\sqrt[3]{5}\right)^3=2x-1\)
\(\Leftrightarrow\left(\sqrt[3]{2}\sqrt[3]{x+2}-\sqrt[3]{5}\right)^3=2x-1\)
\(\Leftrightarrow-3\sqrt[3]{5}\sqrt[3]{2x+4}+3\sqrt[3]{5^2}\sqrt[3]{2x+4}+2x-1=2x\)
\(\Leftrightarrow3\sqrt[3]{5^2}\sqrt[3]{2x+4}-3\sqrt[3]{5}\left(2x+4\right)^{\frac{2}{3}}=0\)
\(\Leftrightarrow-3\sqrt[3]{5^2}\sqrt[3]{2x+4}\left(\sqrt[3]{2x+4}-\sqrt[3]{5}\right)=0\)
\(\Leftrightarrow x=\frac{1}{2}\left(tm\right)\)
2: ĐKXĐ: x>=0
\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)
=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)
=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)
=>\(-2\sqrt{3x}=-4\)
=>\(\sqrt{3x}=2\)
=>3x=4
=>\(x=\dfrac{4}{3}\left(nhận\right)\)
3:
ĐKXĐ: x>=0
\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)
=>\(13\sqrt{2x}=20+3\sqrt{2}\)
=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)
=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)
=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)
4: ĐKXĐ: x>=-1
\(\sqrt{16x+16}-\sqrt{9x+9}=1\)
=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>\(\sqrt{x+1}=1\)
=>x+1=1
=>x=0(nhận)
5: ĐKXĐ: x<=1/3
\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)
=>\(5\sqrt{1-3x}=10\)
=>\(\sqrt{1-3x}=2\)
=>1-3x=4
=>3x=1-4=-3
=>x=-3/3=-1(nhận)
6: ĐKXĐ: x>=3
\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)
=>x-3=16
=>x=19(nhận)