Tìm x, biết:
a) 3 × x = 27
b) x : 5 = 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x+\dfrac{4}{9}=\dfrac{5}{27}\)
\(x=\dfrac{5}{27}-\dfrac{4}{9}\)
\(x=-\dfrac{7}{27}\)
b) \(x-\dfrac{4}{11}=\dfrac{7}{33}\)
\(x=\dfrac{7}{33}+\dfrac{4}{11}\)
\(x=\dfrac{19}{33}\)
c) \(\dfrac{8}{5}-x=\dfrac{1}{3}\times\dfrac{2}{5}\)
\(\dfrac{8}{5}-x=\dfrac{2}{15}\)
\(x=\dfrac{8}{5}-\dfrac{2}{15}\)
\(x=\dfrac{22}{15}\)
d) \(x-\dfrac{3}{4}=\dfrac{1}{2}+\dfrac{2}{6}\)
\(x-\dfrac{3}{4}=\dfrac{5}{6}\)
\(x=\dfrac{5}{6}+\dfrac{3}{4}\)
\(z=\dfrac{19}{12}\)
a: =>3x+3=5x-25
=>-2x=-28
hay x=14
b: =>3x+6=-4x+20
=>7x=14
hay x=2
a) \(\Rightarrow3x\left(x-5\right)-2\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(3x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{2}{3}\end{matrix}\right.\)
b) \(\Rightarrow x^3+6x^2+12x+8-x^3+6x^2=4\)
\(\Rightarrow12x^2+12x+4=0\)
\(\Rightarrow x\in\varnothing\)(do \(12x^2+12x+4=12\left(x^2+x+\dfrac{1}{4}\right)+1=12\left(x+\dfrac{1}{2}\right)^2+1\ge1>0\))
2(x4+3)-(9)=17
⇒2x4+6+9=17
⇒2x4+15=17
⇒ 2x4=2
⇒ x4=1
⇒ x=\(\pm1\)
b) 5x2.x+1-3.42=-47
⇒5x3+1-48=-47
⇒5x3-47=-47
⇒5x3=0
⇒x3=0
⇒x=0
a) \(2\left(x^4+3\right)-\left(-9\right)=17\)
\(2x^4+6+9=17\)
\(2x^4=2\)
\(x^4=1\)
⇒ \(x=1\)
`a) 3-5+(-x+3)=6`
`=>5+(-x+3)=3-6`
`=>5+(-x+3)=-3`
`=>-x+3=-3-5`
`=>-x+3=-8`
`=>-x=-8-3`
`=>-x=-11`
`=>x=11`
__
`b)(-4-x)+(4-15)=-15`
`=>(-4-x)+-11=-15`
`=>-4-x=-15-(-11)`
`=>-4-x=-15+11`
`=>-4-x=-4`
`=>x=-4-(-4)`
`=>x=-4+4`
`=>x=0`
`c)(11+x)-(-11-9)=32`
`=>(11+x)-(-20)=32`
`=>(11+x)+20=32`
`=>11+x=32-20`
`=>11+x=12`
`=>x=12-11`
`=>x=1`
`a)3-5+(-x+3)=6`
`5+(-x+3)=3-6`
`5+(-x+3)=-3`
`-x+3=-3-5`
`-x+3=-8`
`-x=-8-3`
`-x=-11`
`x=11`
`b,(-4-x)+(4-15)=-15`
`(-4-x)+(-11)=-15`
`-4-x=-15-(-11)`
`-4-x=-15+11`
`-4-x=-4`
`x=-4-(-4)`
`x=-4+4`
`x=0`
`c)(11+x)-(-11-9)=32`
`(11+x)-(-20)=32`
`(11+x)+20=32`
`11+x=32-20`
`11+x=12`
`x=12-11`
`x=1`
`x :3*5 = 3/4 :(-5/6)`
`x :15 =3/4*(-6/5)=-9/10`
`x = -9/10 *15 =-27/2`
`x-1*2/2 = 8/x -1.2`
`x- 1*1 = 8/x -2`
`x-8/x = -2+1`
`x-8/x =-1`
`x^2 -8x =-x`
`x^2 -8x +x=0`
`x^2 -7x =0`
`x(x-7) =0`
`=>[(x=0),(x=7):}`
`a, x \div 15=-9/10`
`x=-9/10*14`
`x=-27/2`
`b, (x-1*2)/2=8/(x-1*2)`
\(\left(x-1\cdot2\right)\cdot\left(x-1\cdot2\right)=8\cdot2\)
`(x-1*2)^2=16`
`(x-1*2)^2=(+-4)^2`
\(\Rightarrow\left[{}\begin{matrix}x-1\cdot2=4\\x-1\cdot2=-4\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x-2=4\\x-2=-4\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4+2\\x=\left(-4\right)+2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)
a: =>1/3x-2/5x=5
=>-1/15x=5
=>x=-75
b: =>4x=4
=>x=1
c: =>6*3^x-5*3^x=243
=>3^x=243
=>x=5
a) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)^2=27.\)
\(\Leftrightarrow x^3+27-x\left(x^2-4x+4\right)-27=0.\)
\(\Leftrightarrow x^3-x^3+4x^2-4x=0.\)
\(\Leftrightarrow4x\left(x-1\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=0.\\x-1=0.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0.\\x=1.\end{matrix}\right.\)
Vậy \(S=\left\{0;1\right\}.\)
a. 3 × x = 27
x = 27 : 3
x = 9
b. x : 5 = 4
x = 4 × 5
x = 20