K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2019

Xét ∆ ADB vuông tại A có: AH là đường cao ứng với cạnh huyền BD

⇒ A H 2 = HB. HD = 8.18  HA = 12 (cm) (hệ thức lượng trong tam giác vuông)

Xét ADC vuông tại D có: DH là đường cao ứng với cạnh huyền AC

⇒ H D 2 = H A . H C ⇒ 18 2 = 12 H C => HC = 27 (cm) (hệ thức lượng trong tam giác vuông)

Ta có: AC = AH + HC = 12 + 27 = 39 cm

BD = BH + HD = 8 + 18 = 26cm

S A B C D = A C . B D 2 = 26.39 2 = 507 c m 2

Đáp án cần chọn là: D

12 tháng 6 2021

Ta có: \(AH^2=HD.HB=18.8=144\Rightarrow AH=12\) (cm)

\(\Rightarrow AD=\sqrt{AH^2+HD^2}=\sqrt{12^2+18^2}=6\sqrt{13}\)

\(AB=\sqrt{12^2+8^2}=4\sqrt{13}\)

Ta có: \(DH^2=HA.HC\Rightarrow CH=\dfrac{DH^2}{HA}=\dfrac{18^2}{12}=27\)

\(\Rightarrow CD=\sqrt{CH^2+HD^2}=\sqrt{27^2+18^2}=9\sqrt{13}\)

\(\Rightarrow S_{ABCD}=\dfrac{1}{2}\left(AB+CD\right).AD=\dfrac{1}{2}\left(4\sqrt{13}+9\sqrt{13}\right).6\sqrt{13}\)

\(=507\left(cm^2\right)\)

DD
6 tháng 7 2021

Xét tam giác \(ABD\)vuông tại \(A\):

\(BD^2=AB^2+AD^2\)(định lí Pythagore) 

\(=4^2+10^2=116\)

\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)

Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)

Suy ra \(ABDE\)là hình bình hành. 

\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).

Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):

\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)

\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)

\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)

Hạ \(BH\perp CD\).

\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)

\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)