K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2017

Đáp án là A

27 tháng 10 2023

a:\(a\cdot sin0+b\cdot cos0+c\cdot sin90\)

\(=a\cdot0+b\cdot1+c\cdot1\)

=b+c

b: \(a\cdot cos90+b\cdot sin90+c\cdot sin180\)

\(=a\cdot0+b\cdot1+c\cdot0\)

=b

c: \(a^2\cdot sin90+b^2\cdot cos90+c^2\cdot cos180\)

\(=a^2\cdot1+b^2\cdot0+c^2\left(-1\right)\)

\(=a^2-c^2\)

27 tháng 7 2019

A=\(\left(sin^215^o+sin^275^o\right)+\left(sin^240^o+sin^250^o\right)+\left(sin^260^o+sin^230^o\right)\)

\(=\left(sin^215^o+cos^215^o\right)+...\)

\(=1\cdot3=3\)

Câu c tương tự mà mk nghĩ đề sai dấu - trước cos^245độ

Nói chung nếu: a+b=90 độ

thì: \(sin^2a+sin^2b=1\)

b) thì áp dụng nếu a+b=90 độ:

\(tana=cotb\) và ngược lại

\(tana\cdot cota=1\)

Nói chung là công thức......

18 tháng 8 2017

Vì sin(\(\alpha\) ) = cos (\(90-\alpha\)) nên \(sin^2\alpha=cos^2\left(90-\alpha\right)\)

a/ \(sin^230-sin^240-sin^250+sin^260=\left(cos^260+sin^260\right)-\left(cos^250+sin^250\right)=1-1=0\)

b/ \(cos^225-cos^235+cos^245-cos^255+cos^265=\left(sin^265+cos^265\right)-\left(sin^255+cos^255\right)+cos^245=1-1+cos^245=cos^245=\dfrac{1}{2}\)

12 tháng 8 2020

Chú ý 2 điều: \(\cos45^o=\sin45^o=\frac{\sqrt{2}}{2}\) và \(\cos^2a+\sin^2a=1\)

Do đó: 

a) \(A=\cos^252^o.\frac{\sqrt{2}}{2}+\sin^252^o.\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}\left(\cos^252^o+\sin^252^o\right)=\frac{\sqrt{2}}{2}.1=\frac{\sqrt{2}}{2}\)

b) \(B=\frac{\sqrt{2}}{2}.\cos^247^o+\frac{\sqrt{2}}{2}.\sin^247^o=\frac{\sqrt{2}}{2}\left(\cos^247^o+\sin^247^o\right)=\frac{\sqrt{2}}{2}.1=\frac{\sqrt{2}}{2}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \(A = \cos {0^o} + \cos {40^o} + \cos {120^o} + \cos {140^o}\)

Tra bảng giá trị lượng giác của một số góc đặc biệt, ta có:

 \(\cos {0^o} = 1;\;\cos {120^o} =  - \frac{1}{2}\)

Lại có: \(\cos {140^o} =  - \cos \left( {{{180}^o} - {{40}^o}} \right) =  - \cos {40^o}\)  

\(\begin{array}{l} \Rightarrow A = 1 + \cos {40^o} + \left( { - \frac{1}{2}} \right) - \cos {40^o}\\ \Leftrightarrow A = \frac{1}{2}.\end{array}\)

b) \(B = \sin {5^o} + \sin {150^o} - \sin {175^o} + \sin {180^o}\)

Tra bảng giá trị lượng giác của một số góc đặc biệt, ta có:

 \(\sin {150^o} = \frac{1}{2};\;\sin {180^o} = 0\)

Lại có: \(\sin {175^o} = \sin \left( {{{180}^o} - {{175}^o}} \right) = \sin {5^o}\)  

\(\begin{array}{l} \Rightarrow B = \sin {5^o} + \frac{1}{2} - \sin {5^o} + 0\\ \Leftrightarrow B = \frac{1}{2}.\end{array}\)

c) \(C = \cos {15^o} + \cos {35^o} - \sin {75^o} - \sin {55^o}\)

Ta có: \(\sin {75^o} = \cos\left( {{{90}^o} - {{75}^o}} \right) = \cos {15^o}\); \(\sin {55^o} = \cos\left( {{{90}^o} - {{55}^o}} \right) = \cos {35^o}\)

\(\begin{array}{l} \Rightarrow C = \cos {15^o} + \cos {35^o} - \cos {15^o} - \cos {35^o}\\ \Leftrightarrow C = 0.\end{array}\)

d) \(D = \tan {25^o}.\tan {45^o}.\tan {115^o}\)

Ta có: \(\tan {115^o} =  - \tan \left( {{{180}^o} - {{115}^o}} \right) =  - \tan {65^o}\)

Mà: \(\tan {65^o} = \cot \left( {{{90}^o} - {{65}^o}} \right) = \cot {25^o}\)

\(\begin{array}{l} \Rightarrow D = \tan {25^o}.\tan {45^o}.(-\cot {25^o})\\ \Leftrightarrow D =- \tan {45^o} = -1\end{array}\)

e) \(E = \cot {10^o}.\cot {30^o}.\cot {100^o}\)

Ta có: \(\cot {100^o} =  - \cot \left( {{{180}^o} - {{100}^o}} \right) =  - \cot {80^o}\)

Mà: \(\cot {80^o} = \tan \left( {{{90}^o} - {{80}^o}} \right) = \tan {10^o}\Rightarrow \cot {100^o}  =- \tan {10^o}\)

\(\begin{array}{l} \Rightarrow E = \cot {10^o}.\cot {30^o}.(-\tan {10^o})\\ \Leftrightarrow E = -\cot {30^o} =- \sqrt 3 .\end{array}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

\(A = \cos {75^0}\cos {15^0} = \frac{1}{2}\left[ {\cos \left( {{{75}^0} - {{15}^0}} \right) + \cos \left( {{{75}^0} + {{15}^0}} \right)} \right] \\= \frac{1}{2}.\cos {60^0}.\cos {90^0} = 0\)

\(B = \sin \frac{{5\pi }}{{12}}\cos \frac{{7\pi }}{{12}} = \frac{1}{2}\left[ {\sin \left( {\frac{{5\pi }}{{12}} - \frac{{7\pi }}{{12}}} \right) + \sin \left( {\frac{{5\pi }}{{12}} + \frac{{7\pi }}{{12}}} \right)} \right] \\= \frac{1}{2}\sin \left( { - \frac{{2\pi }}{{12}}} \right).\sin \left( {\frac{{12\pi }}{{12}}} \right) =  - \frac{1}{2}\sin \frac{\pi }{6}\sin \pi  = 0\)