K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2021

\(a,A=\left(\cos^220^0+\cos^270^0\right)+\left(\cos^240^0+\cos^250^0\right)\\ A=\left(\cos^220^0+\sin^220^0\right)+\left(\cos^240^0+\sin^240^0\right)=1+1=2\\ b,B=\left(\cos^2\alpha\right)^3+\left(\sin^2\alpha\right)^3+3\sin^2\alpha\cdot\cos^2\alpha\cdot\left(\sin^2\alpha+\cos^2\alpha\right)\\ B=\left(\sin^2\alpha+\cos^2\alpha\right)^3=1^3=1\)

\(\cot\alpha=\dfrac{1}{2}\)

\(\sin\alpha=\dfrac{kề}{\sqrt{5}kề}=\dfrac{\sqrt{5}}{5}\)

\(\cos\alpha=\sqrt{1-\dfrac{5}{25}}=\dfrac{2\sqrt{5}}{5}\)

28 tháng 7 2016

\(sin^2\alpha+cos^2\alpha=1\Rightarrow cos\alpha=\sqrt{1-sin^2\alpha}=\sqrt{1-\left(0,6\right)^2}=\frac{4}{5}\)

\(tan\alpha=\frac{sin\alpha}{cos\alpha}=\frac{0,6}{\frac{4}{5}}=\frac{3}{4}\)

\(cot\alpha=\frac{1}{tan\alpha}=\frac{1}{\frac{3}{4}}=\frac{4}{3}\)

8 tháng 8 2021

a) sin230 độ - sin240 độ - sin250 độ + sin2 60 độ

= cos260o - cos250o - sin250o + sin260o

= (cos260o + sin260o) - (cos250o + sin250o)

= 1 - 1 = 0

b) cos225 độ - cos235độ + cos245 độ -cos2 55 độ + cos2 65 độ

= sin265o - sin255o + cos245o - cos255o + cos265o

= (sin265o + cos265o) - (sin255o + cos255o) + cos245o

=  1 - 1 +1/2

= 1/2

\(\cos\alpha=\sqrt{1-\dfrac{9}{25}}=\dfrac{4}{5}\)

a: \(A=\cos\alpha\cdot\sin^3\alpha+\cos^3\alpha\cdot\sin\alpha\)

\(=\dfrac{4}{5}\cdot\dfrac{27}{125}+\dfrac{64}{125}\cdot\dfrac{3}{5}\)

\(=\dfrac{4\cdot27+64\cdot3}{625}\)

\(=\dfrac{300}{625}=\dfrac{12}{25}\)

6 tháng 8 2020

Nếu bn phải vẽ hình và chứng minh thì đây nhé

  B C A H M b c h

\(\Delta ABC\)vuông tại A, đường cao AH, trung tuyến AM. Đặt \(\widehat{C}=\alpha\)\(AH=h,\)\(AC=b,\)\(BC=a\)

\(\Rightarrow\Delta AMC\)cân tại M \(\Rightarrow\widehat{MAC}=\widehat{C}=\alpha\)

Vì \(\widehat{AMH}\)là góc ngoài của \(\Delta AMC\)\(\Rightarrow\widehat{AMH}=\widehat{MAC}+\widehat{C}=2\alpha\)

Ta có:

\(\sin\alpha=\sin C=\frac{AH}{AC}=\frac{h}{b}\)    (1)

\(\cos\alpha=\cos C=\frac{AC}{BC}=\frac{b}{a}\)   (2)

\(\sin2\alpha=\sin AMH=\frac{AH}{AM}=\frac{h}{\frac{a}{2}}=\frac{2h}{a}\)  (3)

Từ (1) và (2) suy ra: \(2\sin\alpha\cdot\cos\alpha=2\cdot\frac{h}{b}\cdot\frac{b}{a}=\frac{2h}{a}\)(4)

Từ (3) và (4) suy ra đpcm. Câu dưới mình đang làm bạn chờ xíu nhé ^^

5 tháng 8 2020

Nếu mình nhớ đúng thì công thức này lên lớp 10 mới học đúng không?

\(\sin2\alpha=\sin\left(\alpha+\alpha\right)=\sin\alpha\cos\alpha+\cos\alpha\sin\alpha=2\sin\alpha\cos\alpha\)

\(\cos2\alpha=\cos\left(\alpha+\alpha\right)=\cos\alpha\cos\alpha-\sin\alpha\sin\alpha=\cos^2\alpha-\sin^2\alpha=\left(1-\sin^2\alpha\right)-\sin^2\alpha\)

\(=1-2\sin^2\alpha\)

28 tháng 10 2020

Sửa đề: \(D=\sin^219^0+\cos^219^0+\tan19^0-\cot71^0\)

Ta có: \(D=\sin^219^0+\cos^219^0+\tan19^0-\cot71^0\)

\(=\left(\sin^219^0+\cos^219^0\right)+\left(\cot71^0-\cot71^0\right)\)

\(=1+0=1\)