MN ơi giúp em giải câu 4 với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\) có \(AM\) là đường cao
\(BC^2=AB^2+AC^2\left(pytago\right)\Leftrightarrow BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
\(sinABC=\dfrac{AC}{BC}=\dfrac{16}{20}\Rightarrow\widehat{ABC}\approx53^o8'\)
\(sinACB=\dfrac{AB}{BC}=\dfrac{12}{20}\Rightarrow\widehat{ACB}\approx32^o52'\)
\(AB^2=BM.BC\Rightarrow BM=\dfrac{AB^2}{BC}=\dfrac{12^2}{20}=7,2\left(cm\right)\)
b, Xét \(\Delta ABM\left(\widehat{AMB}=90^o\right)\) có \(AE\perp AB\)
\(AB^2=BM^2+AM^2\left(pytago\right)\Leftrightarrow AM=\sqrt{20^2-7,2^2}=\dfrac{16\sqrt{34}}{5}\left(cm\right)\)
\(AM^2=AE.AB\) (hệ thức lượng trong tam giác vuông)\(\left(1\right)\)
c, Xét \(\Delta AMC\left(\widehat{AMC}=90^o\right)\)
\(AC^2=AM^2+MC^2\left(pytago\right)\Leftrightarrow AM^2=AC^2-MC^2\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow AE.AB=AC^2-MC^2\left(đpcm\right)\)
43.a) \(m_{HCl\left(bđ\right)}=200.10,95\%=21,9\left(g\right)\)
=> \(n_{HCl\left(bđ\right)}=\dfrac{21,9}{36,5}=0,6\left(mol\right)\)
b) HCl phản ứng với NaOH là HCl dư
\(HCl+NaOH\rightarrow NaCl+H_2O\)
\(n_{HCl\left(dư\right)}=n_{NaOH}=0,05.2=0,1\left(mol\right)\)
=> \(n_{HCl\left(pứ\right)}=n_{HCl\left(bđ\right)}-n_{HCl\left(dư\right)}=0,6-0,1=0,5\left(mol\right)\)
c) \(CaCO_3+2HCl\rightarrow CaCl_2+H_2O+CO_2\)
\(n_{CaCO_3}=\dfrac{1}{2}n_{HCl\left(pứ\right)}=0,25\left(mol\right)\)
=> \(m_{CaCO_3}=0,25.100=25\left(g\right)\)
d) \(n_{CO_2}=\dfrac{1}{2}n_{HCl\left(pứ\right)}=0,25\left(mol\right)\)
=> \(V_{CO_2}=0,25.22,4=5,6\left(l\right)\)
e) \(m_{ddsaupu}=25+200-0,25.44=214\left(g\right)\)
Dung dịch A gồm CaCl2 và HCl dư
\(n_{CaCl_2}=\dfrac{1}{2}n_{HCl\left(pứ\right)}=0,25\left(mol\right)\)
\(C\%_{CaCl_2}=\dfrac{0,25.111}{214}.100=12,97\%\)
\(C\%_{HCl\left(dư\right)}=\dfrac{0,1.36,5}{214}.100=1,71\%\)
1: Ta có: ΔOEF cân tại O
mà OI là đường trung tuyến
nên OI\(\perp\)EF
Xét tứ giác OIMP có \(\widehat{OIP}=\widehat{OMP}=90^0\)
nên OIMP là tứ giác nội tiếp
2: Xét ΔOMP vuông tại M có MH là đường cao
nên \(OH\cdot OP=OM^2=OF^2\)
=>\(\dfrac{OH}{OF}=\dfrac{OF}{OP}\)
Xét ΔOHF và ΔOFP có
\(\dfrac{OH}{OF}=\dfrac{OF}{OP}\)
\(\widehat{HOF}\) chung
Do đó: ΔOHF~ΔOFP