Tất cả các giá trị của tham số m để phương trình x 2 + 1 x 2 − 2 m x + 1 x + 1 = 0 có nghiệm là:
A. m ∈ 3 4 ; + ∞
B. m ∈ − ∞ ; 3 4 ∪ 3 4 ; + ∞
C. m ∈ − ∞ ; − 3 4
D. m ∈ − 3 4 ; 3 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp: Chia cả 2 vế cho 3x, đặt , tìm điều kiện của t.
Đưa về bất phương trình dạng
Cách giải :
Ta có
Đặt , khi đó phương trình trở thành
Ta có:
Vậy
\(đặt:x^2=t\ge0\)
\(\Rightarrow pt\Leftrightarrow m.t^2-2\left(m-1\right)t+\left(m-1\right)m=0\left(1\right)\)
\(với:m=0\Rightarrow\left(1\right)\Leftrightarrow-2\left(0-1\right)t=0\Leftrightarrow t=0\Rightarrow x=0\left(tm\right)\)
\(với:m\ne0\) pt đã cho có một nghiệm khi (1) có nghiệm duy nhất bằng 0 hoặc (1) có 1 nghiệm bằng 0 nghiệm còn lại âm
\(\Rightarrow\left[{}\begin{matrix}t=-\dfrac{b}{2a}=\dfrac{2\left(m-1\right)}{m}=0\Leftrightarrow m=1\left(tm\right)\\t1=0=>\left(1\right)\Leftrightarrow\left(m-1\right)m=0\Rightarrow m=0\left(ktm\right);m=1\left(tm\right)\end{matrix}\right.\)
từ 2TH trên \(\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\) thì pt đã cho có 1 nghiệm
1.
Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)
Pt trở thành:
\(4t=t^2-5+2m-1\)
\(\Leftrightarrow t^2-4t+2m-6=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)
2.
Để pt đã cho có 2 nghiệm:
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)
Khi đó:
\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)
\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)
THAY X=4+\(\sqrt{2017}\)VÀO PHƯƠNG TRÌNH=>PT CÓ DẠNG ;GÌ ĐÓ GÌ ĐÓ VIẾT RA NHEN<lười chảy nước>
cho pt cộng với chất xúc tác cho ló pư nhanh(hehe)....=\(2025+6\sqrt{2017}-6m-2m\sqrt{2017}=0\)
=>\(0m^2-\left(6+2\sqrt{2017}\right)m+2025+6\sqrt{2017}=0\)rùi tự giải đenta nha, mệt mỏi qué rùi tui coằn ik ngủ mai kiểm tra, nếu rảnh mai tui qua cho kết quả nha sỏ ry nhìu
chắc qua bùn ngủ qué ko giải đenta nha^,^
m=\(\frac{2025+6\sqrt{2017}}{6+2\sqrt{2017}}\)
a: Khi m=1 thì (1): x^2-2(1-2)x+1^2-5-4=0
=>x^2+2x-8=0
=>(x+4)(x-2)=0
=>x=2 hoặc x=-4
b: Δ=(2m-4)^2-4(m^2-5m-4)
=4m^2-16m+16-4m^2+20m+16
=4m+32
Để pt có hai nghiệm phân biệt thì 4m+32>0
=>m>-8
x1^2+x2^2=-3x1x2-4
=>(x1+x2)^2+x1x2+4=0
=>(2m-4)^2+m^2-5m-4+4=0
=>4m^2-16m+16+m^2-5m=0
=>5m^2-21m+16=0
=>(m-1)(5m-16)=0
=>m=16/5 hoặc m=1
Ta có: x 2 + 1 x 2 − 2 m x + 1 x + 1 = 0
x + 1 x 2 − 2 m x + 1 x − 1 = 0 ( 1 )
Đặt x + 1 x = t , t ≥ 2 ta được t 2 − 2 m t − 1 = 0 ( 2 )
Phương trình (2) luôn có hai nghiệm t 1 < 0 < t 2 d o a , c = - 1 < 0 a ⇒ phương trình (1) có nghiệm khi và chỉ khi phương trình (2) có ít nhất một nghiệm t sao cho t ≥ 2 , hay ít nhất một trong hai số 2; −2 phải nằm giữa hai nghiệm t 1 , t 2 hay f ( 2 ) ≤ 0 f ( − 2 ) ≤ 0 ⇔ 3 − 4 m ≤ 0 3 + 4 m ≤ 0 ⇔ m ≥ 3 4 m ≤ − 3 4
Đáp án cần chọn là: B