Hệ phương trình x 3 − 3 x = y 3 − 3 y x 6 + y 6 = 27 có bao nhiêu nghiệm?
A. 1
B. 2
C. 3
D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x + y + z = 0
<=> (x + y + z)2 = 0
<=> \(x^2+y^2+z^2+2xy+2yz+2zx=0\)
\(\Leftrightarrow xy+yz+zx=-3\) (vì x2 + y2 + z2 = 6)
\(\Leftrightarrow x\left(y+z\right)+yz=-3\)
\(\Leftrightarrow-x^2+yz=-3\Leftrightarrow yz=x^2-3\) (vì x + y + z = 0)
Khi đó \(x^3+y^3+z^3=x^3+(y+z).(y^2+z^2-yz)\)
\(=x^3-x.[6-x^2-(x^2-3)]\)
\(=x^3-x.(9-2x^2)=3x^3-9x=6\)
Ta được \(\Leftrightarrow x^3-3x-2=0\Leftrightarrow(x^3+1)-3(x+1)=0\)
\(\Leftrightarrow(x+1)(x^2-x-2)=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Với x = -1 ta có hệ \(\left\{{}\begin{matrix}y+z=1\\y^2+z^2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-z\\(1-z)^2+z^2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-z\\z^2-z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-z\\\left[{}\begin{matrix}z=-1\\z=2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2\\z=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=-1\\z=2\end{matrix}\right.\end{matrix}\right.\)
Với x = 2 ta có hệ : \(\left\{{}\begin{matrix}y+z=-2\\y^2+z^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2-z\\(-2-z)^2+z^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2-z\\z^2+2z+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-2-z\\z=-1\end{matrix}\right.\Leftrightarrow y=z=-1\)
Vậy (x;y;z) = (2;-1;-1) ; (-1 ; 2 ; -1) ; (-1 ; -1 ; 2)
Hệ đã cho ⇔ x y 2 + 6 x − y 2 − 6 = y x 2 + y y x 2 + 6 y − x 2 − 6 = x y 2 + x
Trừ vế theo vế hai phương trình của hệ ta được:
2xy(y – x) +7 (x – y) + (x – y) (x + y) = 0
⇔ (x – y)(x + y – 2xy + 7) = 0 x = y x + y − 2 x y + 7 = 0
+ Nếu x = y thay vào hệ ta có: x 2 – 5 x + 6 = 0 ⇔ x = y = 2 x = y = 3
+ Nếu x + y – 2xy + 7 = 0 ⇔ 2x + 2y – 4xy + 14 = 0
⇔ (2x – 1) + 2y (1 – 2x) = −15 ⇔ (1 – 2x) (1 – 2y) = 15
Mặt khác khi cộng hai phương trình của hệ đã cho ta được:
x 2 + y 2 – 5 x – 5 y + 12 = 0 ⇔ 4 x 2 – 20 x + 25 + 4 y 2 – 20 y + 25 – 2 = 0
⇔ ( 2 x – 5 ) 2 + ( 2 y – 5 ) 2 = 2 ⇔ ( 2 x – 5 ) 2 + ( 2 y – 5 ) 2 = 2
Đặt a = 2x – 5; b = 2y – 5
Ta có a 2 + b 2 = 2 a + 4 b + 4 = 14
⇔ a + b 2 − 2 a b = 2 a b + 4 a + b = − 1 ⇔ a + b = 0 a b = − 1 a + b = − 8 a b = 31
Trường hợp 1: a + b = 0 a b = − 1 ⇔ (x; y) = (3; 2), (2; 3)
Trường hợp 2: a + b = − 8 a b = 31 vô nghiệm
Vậy nghiệm của hệ đã cho là (x; y) {(2; 2); (3; 3); (2; 3); (3; 2)}
Suy ra có một cặp nghiệm thỏa mãn yêu cầu bài toán là (x; y) = (3; 2)
Đáp án:A
Đặt 2 pt lần lượt là (1) và (2) nhé.
Bình phương (1) được: (x+3)^2 + (y-2)^2 + 2*|(x+3)(y-2)| = 25 <=> (x+3)^2 + (y-2)^2 + 2*6 =25
<=> (x+3)^2 + (y-2)^2 = 25- 12 = 13
Ta có HPT:
(x+3)(y-2)= -6 (2) => 2*(x+3)(y-2) = -12 (4)
(x+3)^2 + (y-2)^2 = 13 (3) (x+3)^2 + (y-2)^2 = 13 (3)
~ Lấy (3) + (4) được: (x+3+y-2)^2 = 1 (hằng đẳng thức a^2+b^2 + 2ab)
=> ( x+y+1)^2 = 1
=> x+y= 0 hoặc x+y = -2
TH1: x+y=0 -> x= -y
Thay vào (2) được: (-y+3)(y-2)=-6 => (y-3)(y-2) = 6 => y^2 -5y + 6 = 6 => y^2 - 5y=0
=> y(y-5) = 0 => y=0 -> x= 0 hoặc y = 5 -> x= -5
TH2: x+y = -2 => x = -2 - y
Thay x= -2 - y vào (2) được: (-2 -y +3)(y-2) = -6 => ( -y + 1)(y-2) = -6 => (y-1)(y-2) = 6
=> y^2 - 3y + 2 = 6 -> y^2 - 3y - 4 =0
Giải pt này ra ( dạng đặc biệt a-b+c=0) được 2 nghiệm y1 = -1 -> x = -1 ; y2 = -c/a = 4 -> x = -6
Vậy hpt có 4 nghiệm: {x;y}= {0;0}, {-5; 5}, {-1; -1} , {-6; 4}
-----
Note: Nếu cách này có dài mong bạn thông cảm có thể tìm cách khác. Nếu có thì send massage cách đó cho mình học hỏi nhá. Phần kết luận bạn xem thứ tự x,y có đúng ko nha.
[ x + 3 + y - 2 = 5
[xy -2x + 3y- 6 = -6
{x + y = 4
{xy -2x + 3y = o
[x= 4 - y
[4y - y2 - 8 + 2y + 3y = 0
{x = 4 - y
{- y2 + 9y - 8 = 0 <=> a+b+c = -1 + 9 - 8 = 0 => y1 =1 ; y2 = 8
thay y ta có : x1 = 3 ; x2 = -4
a) \(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(\Leftrightarrow-7x^2-9x+4+x^3+3x^2+4x+2=\sqrt[3]{7x^2+9x-4}\)
\(\Leftrightarrow-\left(7x^2+9x-4\right)+\left(x+1\right)^3+x+1=\sqrt[3]{7x^2+9x-4}\) (*)
Đặt \(\sqrt[3]{7x^2+9x-4}=a;x+1=b\)
Khi đó (*) \(\Leftrightarrow-a^3+b^3+b=a\)
\(\Leftrightarrow\left(b-a\right).\left(b^2+ab+a^2+1\right)=0\)
\(\Leftrightarrow b=a\)
Hay \(x+1=\sqrt[3]{7x^2+9x-4}\)
\(\Leftrightarrow\left(x+1\right)^3=7x^2+9x-4\)
\(\Leftrightarrow x^3-4x^2-6x+5=0\)
\(\Leftrightarrow x^3-4x^2-5x-x+5=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-1\pm\sqrt{5}}{2}\end{matrix}\right.\)
<=> xy+5x+3y+15=xy+8x+y+8 <=> 3x-2y=7 <=> 9x-6y=21 <=> x=3 <=> x=3
10xy+14x-15y-21=10xy+10x-12y-12 4x-3y=9 8x-6y=18 8.3-6y=18 y=1
Khi x = y thì x 6 + x 6 = 27 ⇔ x 6 = 27 2 ⇔ x = ± 27 2 6
Do đó hệ có nghiệm ± 27 2 6 ; ± 27 2 6
⇔ 3 x y 3 + 27 x y = 0 ⇔ x y = 0 x y 2 = − 9 v ô l ý
Vậy hệ phương trình đã cho có 2 nghiệm.
Đáp án cần chọn là: B