Tìm 2 số tự nhiên a và b, biết a.b =2940 và bội chung nhỏ nhất của chúng bằng 210
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số cần tìm là a và b ( 0<b<a)
Théo đề bài ta có: a - b = 8210 *
và : a = b.206 + 10 * *
Thay * * vào * ta được: b.206 + 10 - b = 8210
=> b = 40
Vậy a = 8250
gọi 3 số cần tìm là a,b,c
ta có \(\frac{a}{3}\)= \(\frac{b}{5}\) \(\frac{c}{4}\)=\(\frac{a}{7}\)
=>\(\frac{a}{21}\)=\(\frac{b}{35}\)=\(\frac{c}{28}\)
gọi \(\frac{a}{21}\)= \(\frac{b}{35}\)=\(\frac{c}{28}\)=k
ta có a=21k
b=35k
c=28k
BCNN(a,b,c) = 7.4.3.5k=420k
=> k=1260:420=3
=>a=3.21=66
b=3.35=105
c=3.28=84
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Gọi ba số đó là a,b,c: a/3=b/5,c/4=a/7=>a/21=b/35=c/28.
Gọi a/21=b/35=c/28=k ta có a=21k,b=35k,c=28k
BCNN(a,b,c)=7x4x3x5k=420k
=>1260:420=3=>a=3x21=66
b=3x35=105
c=3x28=84
Gọi 2 số là a,b \(\left(9< a,b< 100;a,b\in N\right)\)
\(ƯCLN\left(a,b\right)=12\Rightarrow\left\{{}\begin{matrix}a=12k\\b=12q\end{matrix}\right.\left(k,q\in N\text{*}\right)\\ \Rightarrow144kq=5040\\ \Rightarrow kq=35\)
Mà \(\left(k,q\right)=1\Rightarrow\left(k;q\right)\in\left\{\left(1;35\right);\left(5;7\right);\left(7;5\right);\left(35;1\right)\right\}\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(12;420\right);\left(420;12\right);\left(84;60\right);\left(60;84\right)\right\}\)
Vậy 2 số cần tìm là 60 và 84
UCLN của chúng là 12 mà 2 số đó thuộc N nên gọi 2 số đó là a,b
a=12x ( Vì a chia hết 12)
b=12y( Như trên )
12x X 12y= 5040
144 ( xy) = 5040
xy = 35 với (x,y) =1 ( Ước chung lớn nhất của x và y là 1 )
Ta có bảng giá trị :
x= 1 thì y =35 và a = 12 và b= 420
x=5 thì y=7 và a = 60 , b=84
Suy ra (a,b) = (12,420) , (60,84) và hoán vị
Tivk mình bạn nhé
a) P = 1 + 2 + 22+23+24+25+26+27+...+299
P = (1+2) + (22+23)+(24+25)+(26+27)+...+(298+299)
P = 3 + 22(1+2) + 24(1+2) + 26(1+2)+...+298(1+2)
P = 3 + 22.3+24.3+26.3+...+298.3
P = 3(1+22+24+26+...+298) \(\Rightarrow P⋮13\)
b) Ta có : ab = ƯCLN(a;b).BCNN(a;b)=2940
ab = ƯCLN(a;b) .210 = 2940
=> ƯCLN(a;b) =2940 : 210 = 14
=>ƯCLN (\(\frac{a}{14};\frac{b}{14}\)) = 1
=> BCNN (\(\frac{a}{14};\frac{b}{14}\) )=15
Ta có bảng :
\(\frac{a}{14}\) | 1 | 3 |
\(\frac{b}{14}\) | 15 | 5 |
\(a\) | 14 | 42 |
\(b\) | 210 | 70 |
Vậy (a;b) \(\in\){(14;210);(42;70)}
\(\frac{2}{3}a=\frac{3}{4}b\Rightarrow a=\frac{3}{4}b:\frac{2}{3}\Rightarrow a=\frac{9}{8}b\Rightarrow a^2=\left(\frac{9}{8}b\right)^2\Rightarrow a^2=\left(\frac{9}{8}\right)^2\cdot b^2\Rightarrow a^2=\frac{81}{64}b^2\)
Ta có:
\(a^2-b^2=68\Rightarrow\frac{81}{64}b^2-b^2=68\Rightarrow\frac{17}{64}b^2=68\Rightarrow b^2=68:\frac{17}{64}\Rightarrow b^2=16\Rightarrow b=4\)
\(\Rightarrow a=\frac{81}{64}b=\frac{81}{64}:4=\frac{81}{16}\)
=> Vậy : \(a=\frac{81}{16};b=4\)