K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

19 tháng 11 2019

Chọn đáp án A.

15 tháng 6 2019

8 tháng 1 2017

Đáp án A

Gọi M, N lần lượt là trung điểm của AB và CD Δ A N B  cân tại N nên M N ⊥ A B Δ A D B = Δ A C B    c . c . c . Nên M D = M C ⇒ Δ M D C cân tại M ⇒ M N ⊥ C D    2  

Từ (1), (2) ta có MN là đoạn vuông góc chung của AB và DC.

Vậy khoảng cách giữa AB và CD bằng MN. M N = A N 2 − A M 2 = 3 3 2 2 − 5 2 2 = 2 2  

22 tháng 2 2021

Gọi M, N lần lượt là trung điểm các cạnh  AB và CD.

Ta có tam giác ANB cân tại N,

-> MN vuông góc AB.

Tam giác ADB = Tam giác ACB, ta có:

MD=MC -> Tam giác MDC cân tại M.

-> MN vuông góc CD

Do đó ta suy ra MN là đoạn vuông góc chung của cạnh AB và CD.

Ta có khoảng cách từ cạnh AB đến CD là MN:

MN= căn bậc a (AN^2-AM^2)= √2/2

Đáp số: khoảng cách giữa cạnh AB và CD là 2/2

22 tháng 2 2021

Gọi M và N lần lượt là trung điểm của AB và CD. Khi đó:

\(\Delta ACD\)và \(\Delta BCD\)là 2 tam giác đều cạnh 3 nên AN=BN=\(\frac{3\sqrt{3}}{2}\)

Đồng thời \(\Delta ABC=\Delta ABD\)nên CM=DM

Do đó MAB và NCD là 2 tam giác cân tại M và N

Vậy MN _|_ BA và MN _|_ CD

Ta có MN=\(\sqrt{NB^2-MB^2}=\sqrt{\frac{27}{4}-\frac{25}{4}}=\frac{\sqrt{2}}{2}\)

16 tháng 4 2017

6 tháng 9 2017

29 tháng 3 2018

14 tháng 3 2018

Phương pháp

+) Dựng E sao cho ABCE là hình bình hành. Chứng minh d(AB;CD) = d(M;(CDE)).

+) Dựng khoảng cách từ M đến (CDE).

+) Áp dụng định lí Pytago trong các tam giác hình vuông tính CD.

Cách giải

Dựng E sao cho ABCE là hình bình hành như hình vẽ.

25 tháng 11 2017

Chọn đáp án A

Gọi G là trọng tâm tam giác BCD => AG ⊥ (BCD)

Gọi M là trung điểm CD => BMCD

Kẻ MKAB (K ∈ AB)

Mặt khác MKCD vì CD(SBM)

=> MK là đường vuông góc chung.

=> d(AB;CD) = MK

Khi đó M là trung điểm AB

Vậy khoảng cách giữa AB và CD bằng