cho M = ( -a + b ) - ( b + c - a ) + ( c - a) với b thuộc Z , a là số nguyên
Chứng minh M dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
-(a+b)-(b+c-a)+(c-a)
=-a-b-b-c+a+c-a ( phá ngoặc theo qui tắc dấu ngoặc đã học )
=[(-a+a)-c+c]-b-b-a ( đổi vị trí các số hạng)
=0-a-b-b
=-a-2b
Vì a là số âm nên -a là số dương và lớn hơn 0.
Còn tiếp chắc đề sai nên tớ thui zậy ♥
-a+b-b-c+a+c-a
=-(a-a+a)+(b-b)-(c-c)
=-a+0-0
M ko phải số dương
ta dựa vào a/b <1 thì a/b < a+c/b+c
=>(a/a+b+c)+(b/a+b+c)+(c/a+b+c)<M<(a+c/a+b+c)+(b+a/a+b+c)+(c+b/a+b+c)
=>1<M<2
=> m ko là số nguyên
click đúng nhé
M=a/a+b+b/b+c+c/c+a vs a,b,c lớn hơn 0
M=1+b+1+c+1+a=3+a,b,c
M là số nguyên
Ta có a/b+c+b/a+c+c/a+b > a/a+b+c+b/b+c+a+c/b+c+a=a+b+c/a+b+c=1
=>M>1
Lại có M=(1-b/a+b)+(1- c/b+c)+(1-c/a+c)<3-(b/a+b+c+c/b+c+a+a/c+a+b)=3-1=2
=>M < 2
do đo 1<M<2=>đpcm