Chứng tỏ rằng 21 10 – 1 chia hết cho 200
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu bạn là hs chuyên toán thì mình giải theo cách này
ta thấy 200=8.25 (phân tích thừa số nguyên tố)
ta cần chứng minh 2110-1 đông dư 0 (mod8) ta co 212 đồng dư 1 (mod 8) <=> 2110-1 đồng dư o mod 8 (1)
2110-1 dong du 0 (mod 25) ta có 215 đồng dư 1 (mod 25) <=> 2110-1 đồng dư 0 mod 25 (2)
từ (1) và (2)
tao suy ra..............
-
Ta có: 2110 - 1 = (21 - 1)(219 + 218 + 217 + ... + 21 + 1)
= 20.10M (M ∈ N)
= 200.M chia hết cho 200.
\(21^2\equiv1\left(mod8\right)\Leftrightarrow21^{10}\equiv1^5=1\left(mod8\right)\\ \Leftrightarrow21^{10}-1\equiv0\left(mod8\right)\\ \Leftrightarrow21^{10}-1⋮8\left(1\right)\\ 21^5\equiv1\left(mod25\right)\Leftrightarrow21^{10}\equiv1^2=1\left(mod25\right)\\ \Leftrightarrow21^{10}-1\equiv0\left(mod25\right)\\ \Leftrightarrow21^{10}-1⋮25\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow21^{10}-1⋮25\cdot8=200\)
\(21^{10}-1\)
\(=\left(20+1\right)^{10}-1\)
\(=20^{10}+1^{10}-1\)
\(=20^{10}+\left(1-1\right)\)
\(=\left(20^2\right)^5\)
\(=400^5\)
\(=\left(200.2\right)^5\)
\(=200^5.2^5⋮200\left(đpcm\right)\)
21^10 -1
=(21^5)^2-1^2
=(21^5+1)(21^5-1)
Có 21^5+1=B suy rađặt 21^5+1=2k
suy ra 21^10=2k(21^5-1)=2k
Ta có:
\(21^{10}-1\)
\(=\left(21^5\right)^2-1^2\)
\(=\left(21^5+1\right)\left(21^5-1\right)\)
Có \(21^5+1=B\left(2\right)\Rightarrow\)Đặt \(21^5+1=2k\)
\(\Rightarrow21^{10}-1=2k\left(21^5-1\right)=2k.\left(...00\right)\)chia hết cho 200
Vậy ...
Có:
212 đồng dư 41(mod200)
(212)5 đồng dư 415 (mod200) đồng dư 1(mod200)
hay 2110 đồng dư 1(mod200)
=>2110-1 đồng dư 1-1(mod200)
=>2110 chia hết chon200
6^100-1 =......6-1=......0 chia hết cho 5
21^10-11^10=.....1-.......1=......0 chia hết cho 10
* Áp dụng hằng đẳng thức:
Ta có:
Ta có:
gồm có 10 số hạng
có chữ số tận cùng bằng 0. Do đó, ta có thể viết:
Thay vào (*) ta được:
2110 - 1 = 20.10.A = 200A
Suy ra: 2110 - 1 chia hết cho 200.