Cho ΔABC lấy M là trung điểm của BC
a)CMR:Nếu AM=1/2BC thì Â=90*
b)CM:Nếu Â=90* thì AM=1/2 BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ke AD sao cho goc DAB =goc ACD => goc DAB =goc BAD ( cung phu voi DAC)
=> tam giac ABD can tai D => AD=BD
=>Tam giac ADC can tai D => AD=DC
=>DB=DC=DA => D trung voi M
=> AM =BC/2
b) Nguoc lai :
Neu AM =BC/2 => AM =MB =MC
=> ABM can tai M ; ACM can tai M
=> BAM + CAM = (180- AMB)/2 +(180-AMC)/2 = (360 -(AMB+AMC))/2 =(360-180)/2=180/2=90
=>BAC=90
=> A=90
a) Xét tam giác BMA và tam giác CMN:
BM=MC ( M là trung điểm của BC)
\(\widehat{BMA=\widehat{CMN}}\)(2 góc đối đỉnh)
AM=MN ( M là trung điểm của AN)
=>Tam giác BMA=tam giác CMN(c-g-c)
=>\(\widehat{ABM}\)=\(\widehat{MCN}\)(2 góc tương ứng)
mà chúng nằm ở vị trí so le trong
=>BA//NC
b) CM cho AN=BC =>Am=\(\frac{1}{2}\)BC
Xét ΔAMB và ΔNMC có :
MA=MN ( gt)
\(\widehat{M_1}\)= \(\widehat{M_2}\)(2 góc đối đỉnh )
MB =MC (gt)
Suy ra: ΔAMB=ΔNMC(c.g.c)
⇒ CN = AB ( 2 cạnh tương ứng )
⇒ \(\widehat{NCM}=\widehat{ABM}\)( 2 góc tương ứng ) ⇒ CN // AB ( vì có cặp góc so le trong bằng nhau )