K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

a: Xét tứ giác AICK có 

AI//CK

AI=CK

Do đó: AICK là hình bình hành

30 tháng 10 2021
 Tham khảo!Anser reply image  
2 tháng 6 2018

A B C D O E F I K P O'

Gọi giao điểm của AC và BD là O; giao điểm của KI và AF là O'. Tia FI cắt AC tại điểm P.

Xét tứ giác AKFI: FI//AK; KF//AI => Tứ giác AKFI là hình bình hành.

Do KI cắt AF tại O' => O' là trung điểm của AF.

Xét \(\Delta\)AFC: O' là trung điểm của AF; E là trung điểm của FC

=> O'E là đường trung bình của \(\Delta\)AFC => O'E//AC và O'E=1/2.AC

Ta thấy tứ giác ABCD là hình bình hành; AC giao BD tại O => OA=OC=1/2.AC

Do đó: O'E=OA. Mà O'E//OA (O'E//AC) nên tứ giác AO'EO là hình bình hành.

=> AO' // OE hay AF//BD => ^KAF=^ADB (Đồng vị)

Xét \(\Delta\)AKF và \(\Delta\)DAB: ^KAF=^ADB; ^AKF=^DAB (Vì KF//AB)

=> \(\Delta\)AKF ~ \(\Delta\)DAB (g.g) => \(\frac{AK}{DA}=\frac{KF}{AB}\).

Lại có KF=AI và AB=DC => \(\frac{AK}{AD}=\frac{AI}{DC}\)=> \(\Delta\)KAI ~ \(\Delta\)ADC (c.g.c)

=> ^AIK=^DCA. Mà ^DCA=^BAC nên ^AIK=^BAC => IK // AC (*)

Lại thấy: FI//AK => IP//AK; KI // AC (cmt) => KI//AP.

Từ đó suy ra: Tứ giác APIK là hình bình hành => IP=AK. Mà FI=AK.

=> FI=IP => I là trung điểm của FP.

Xét \(\Delta\)PFC: I là trung điểm FP; E là trung điểm của FC => IE//PC hay IE//AC (**)

Tư (*) và (**) => I;E;K là 3 điểm thẳng hàng (Tiên đề Ơ-clit) (đpcm).