K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

25 tháng 6 2021

a)\(x^3+x^2+x=-\dfrac{1}{3}\)

\(\Leftrightarrow3x^3+3x^2+3x=-1\)

\(\Leftrightarrow\left(x+1\right)^3=-2x^3\)

\(\Leftrightarrow x+1=\sqrt[3]{-2}x\)

\(\Leftrightarrow x=-\dfrac{1}{1+\sqrt[3]{2}}\)

b) \(x^3+2x^2-4x=-\dfrac{8}{3}\)

\(\Leftrightarrow3x^3+6x^2-12x+8=0\)

\(\Leftrightarrow4x^3-\left(x^3-6x^2+12x-8\right)=0\)

\(\Leftrightarrow4x^3=\left(x-2\right)^3\)

\(\Leftrightarrow\sqrt[3]{4}x=x-2\)

\(\Leftrightarrow x=\dfrac{2}{1-\sqrt[3]{4}}\)

Thêm cái icon tặng cho người xong trước, chứ toi đang ức chế vc

25 tháng 6 2021

Icon hihi này này,mấy người đánh máy nhanh quá làm toi phải bỏ đi mấy bài :), mà mấy bài dài vc chứ ngắn gì đâu

a) ĐKXĐ: \(x\ne1\)

Ta có: \(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\)

\(\Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\)

\(\Leftrightarrow21x-9=2x-2\)

\(\Leftrightarrow21x-2x=-2+9\)

\(\Leftrightarrow19x=7\)

\(\Leftrightarrow x=\dfrac{7}{19}\)

Vậy: \(S=\left\{\dfrac{7}{19}\right\}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \({3^{x + 2}} = \sqrt[3]{9} \Leftrightarrow {3^{x + 2}} = {9^{\frac{1}{3}}} \Leftrightarrow {3^{x + 2}} = {\left( {{3^2}} \right)^{\frac{1}{3}}} \Leftrightarrow {3^{x + 2}} = {3^{\frac{2}{3}}} \Leftrightarrow x + 2 = \frac{2}{3} \Leftrightarrow x =  - \frac{4}{3}\)

b) \({2.10^{2{\rm{x}}}} = 30 \Leftrightarrow {10^{2{\rm{x}}}} = 15 \Leftrightarrow 2{\rm{x}} = \log 15 \Leftrightarrow x = \frac{1}{2}\log 15\)

c) \({4^{2{\rm{x}}}} = {8^{2{\rm{x}} - 1}} \Leftrightarrow {\left( {{2^2}} \right)^{2{\rm{x}}}} = {\left( {{2^3}} \right)^{2{\rm{x}} - 1}} \Leftrightarrow {2^{4{\rm{x}}}} = {2^{6{\rm{x}} - 3}} \Leftrightarrow 4{\rm{x}} = 6{\rm{x}} - 3 \Leftrightarrow  - 2{\rm{x}} =  - 3 \Leftrightarrow x = \frac{3}{2}\).

3 tháng 2 2021

Bài 1: Giải các phương trình sau:

a) 3(2,2-0,3x)=2,6 + (0,1x-4)

<=> 6.6 - 0.9x = 2,6 + 0,1x - 4

<=> - 0.9x - 0,1x = -6.6 -1,4

<=> -x = -8

<=> x = 8

Vậy x = 8

b) 3,6 -0,5 (2x+1) = x - 0,25(22-4x)

<=> 3,6 - x - 0,5 = x - 5,5 + x

<=> - x - 3,1 = -5,5

<=> - x = -2.4

<=> x = 2.4

Vậy  x = 2.4

a: 3(x-1)+2=2x-1

=>3x-3+2=2x-1

=>3x-1=2x-1

hay x=0

b: (x+1)(x-3)=0

=>x+1=0 hoặc x-3=0

=>x=-1 hoặc x=3

c: \(\Leftrightarrow x\left(x-1\right)-\left(2x-3\right)\left(x+1\right)=x+3\)

\(\Leftrightarrow x^2-x-2x^2-2x+3x+3=x+3\)

\(\Leftrightarrow-x^2-x=0\)

=>x=0(nhận) hoặc x=-1(loại)

9 tháng 1 2023

a. 3(x-2)-10=5(2x + 1)

<=> 3x - 6 - 10 = 10x + 5

<=> 3x - 10x = 5 + 6 + 10

<=> -7x = 21

<=> x = -3

b. 3x + 2=8 -2(x-7)

<=> 3x + 2 = 8 - 2x + 14

<=> 3x + 2x = 8 + 14 - 2

<=> 5x = 20

<=> x = 4

c. 2x-(2+5x)= 4(x + 3)

<=> 2x - 2 - 5x = 4x + 12

<=> 2x - 5x - 4x = 12 + 2

<=> -7x = 14

<=> x = -2

d. 5-(x +8)=3x + 3(x-9)

<=> 5 - x - 8 = 3x + 3x - 27

<=> -x - 3x - 3x = -27 + 8 - 5

<=> -7x = -24

<=> x = 24/7

e. 3x - 18 + x= 12-(5x + 3)

<=> 3x - 18 + x = 12 - 5x - 3

<=> 3x + x - 5x = 12 - 3 + 18

<=> -x = 27

<=> x = - 27

a. 3(x-2)-10=5(2x + 1)

<=> 3x - 6 - 10 = 10x + 5

<=> 3x - 10x = 5 + 6 + 10

<=> -7x = 21

<=> x = -3

b. 3x + 2=8 -2(x-7)

<=> 3x + 2 = 8 - 2x + 14

<=> 3x + 2x = 8 + 14 - 2

<=> 5x = 20

<=> x = 4

c. 2x-(2+5x)= 4(x + 3)

<=> 2x - 2 - 5x = 4x + 12

<=> 2x - 5x - 4x = 12 + 2

<=> -7x = 14

<=> x = -2

d. 5-(x +8)=3x + 3(x-9)

<=> 5 - x - 8 = 3x + 3x - 27

<=> -x - 3x - 3x = -27 + 8 - 5

<=> -7x = -24

<=> x = 24/7

e. 3x - 18 + x= 12-(5x + 3)

<=> 3x - 18 + x = 12 - 5x - 3

<=> 3x + x - 5x = 12 - 3 + 18

<=> -x = 27

<=> x = - 27

3 tháng 1 2021

1.

\(\sqrt{50}-3\sqrt{8}+\sqrt{32}=5\sqrt{2}-6\sqrt{2}+4\sqrt{2}=3\sqrt{2}\)

2. 

a, ĐK: \(x\in R\)

\(pt\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\)

\(\Leftrightarrow\left|x-2\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

b, ĐK: \(x\ge3\)

\(pt\Leftrightarrow\sqrt{x-3}\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(l\right)\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) \(\sqrt {2{x^2} + x + 3}  = 1 - x\)

Bình phương hai vế của phương trình ta được:

\(2{x^2} + x + 3 = 1 - 2x + {x^2}\)

Sau khi thu gọn ta được \({x^2} + 3x + 2 = 0\). Từ đó x=-1 hoặc x=-2

Thay lần lượt hai giá trị này của x vào phương trình đã cho ta thấy cả hai giá trị \(x =  - 1;x =  - 2\) đều thỏa mãn

Vậy phương trình có tập nghiệm \(S = \left\{ { - 1; - 2} \right\}\)

b) \(\sqrt {3{x^2} - 13x + 14}  = x - 3\)

Bình phương hai vế của phương trình ta được:
\(3{x^2} - 13x + 14 = {x^2} - 6x + 9\)

Sau khi thu gọn ta được \(2{x^2} - 7x + 5 = 0\). Từ đó \(x = 1\) hoặc \(x = \frac{5}{2}\)

Thay lần lượt hai giá trị này của x vào phương trình đã cho ta thấy không có giá trị nào của x thỏa mãn

Vậy phương trình vô nghiệm.

a: =>3,6-1,7x=2,3-1,4-4=0,9-4=-3,1

=>1,7x=6,7

hay x=67/17

b: \(\Leftrightarrow30\left(5x+4\right)-15\left(3x+5\right)=24\left(4x+9\right)-40\left(x-9\right)\)

=>150x+120-45x-75=96x+216-40x+360

=>105x+45=56x+576

=>49x=531

hay x=531/49

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \(\sqrt {{x^2} - 7x}  = \sqrt { - 9{x^2} - 8x + 3} \)

\(\begin{array}{l} \Rightarrow {x^2} - 7x =  - 9{x^2} - 8x + 3\\ \Rightarrow 10{x^2} + x - 3 = 0\end{array}\)

\( \Rightarrow x =  - \frac{3}{5}\) và \(x = \frac{1}{2}\)

Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {{x^2} - 7x}  = \sqrt { - 9{x^2} - 8x + 3} \) thì ta thấy chỉ có nghiệm \(x =  - \frac{3}{5}\) thỏa mãn phương trình

Vậy nghiệm của phương trình là \(x =  - \frac{3}{5}\)

b) \(\sqrt {{x^2} + x + 8}  - \sqrt {{x^2} + 4x + 1}  = 0\)

\(\begin{array}{l} \Rightarrow \sqrt {{x^2} + x + 8}  = \sqrt {{x^2} + 4x + 1} \\ \Rightarrow {x^2} + x + 8 = {x^2} + 4x + 1\\ \Rightarrow 3x = 7\\ \Rightarrow x = \frac{7}{3}\end{array}\)

Thay \(x = \frac{7}{3}\) vào phương trình \(\sqrt {{x^2} + x + 8}  - \sqrt {{x^2} + 4x + 1}  = 0\) ta thấy thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x = \frac{7}{3}\)

c) \(\sqrt {4{x^2} + x - 1}  = x + 1\)

\(\begin{array}{l} \Rightarrow 4{x^2} + x - 1 = {\left( {x + 1} \right)^2}\\ \Rightarrow 4{x^2} + x - 1 = {x^2} + 2x + 1\\ \Rightarrow 3{x^2} - x - 2 = 0\end{array}\)

\( \Rightarrow x =  - \frac{2}{3}\) và \(x = 1\)

Thay hai nghiệm trên vào phương trình \(\sqrt {4{x^2} + x - 1}  = x + 1\) ta thấy cả hai nghiệm đều thỏa mãn

Vậy nghiệm của phương trình trên là \(x =  - \frac{2}{3}\) và \(x = 1\)

d) \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \)

\(\begin{array}{l} \Rightarrow 2{x^2} - 10x - 29 = x - 8\\ \Rightarrow 2{x^2} - 11x - 21 = 0\end{array}\)

\( \Rightarrow x =  - \frac{3}{2}\) và \(x = 7\)

Thay hai nghiệm \(x =  - \frac{3}{2}\) và \(x = 7\) vào phương trình  \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \) ta thấy cả hai đều không thảo mãn phương trình

Vậy phương trình \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \) vô nghiệm