K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2015

Bài này không khó lắm  

~~~Đoàn Ngọc Minh Hiếu~~~

14 tháng 10 2020

Chứng minh

a) \(2\equiv-1\left(mod3\right)\)

\(\Rightarrow2^{1000}\equiv\left(-1\right)^{1000}\equiv1\left(mod3\right)\Rightarrow2^{1000}-1\equiv0\left(mod3\right)\Rightarrowđpcm\)

b) \(19\equiv-1\left(mod20\right)\)

\(\Rightarrow19^{45}\equiv\left(-1\right)^{45}\equiv1\left(mod20\right);19^{30}\equiv\left(-1\right)^{30}\equiv1\left(mod20\right)\)

\(\Rightarrow19^{45}+19^{30}\equiv0\left(mod20\right)\Rightarrowđpcm\)

17 tháng 1 2018

 1+2+2^2+2^3+...+2^2015

=(1+2+2^2)+(2^3+2^4+2^5)+...+(2^2013+2^2014+2^2015)

=7+2^3.(1+2+2^2)+...+2^2013.(1+2+2^2)

=7+2^3.7+...+2^2013.7

=7.(1+2^3+...+2^2013)

Vì 7 chia hết cho 7 nên 7.(1+2^3+..+2^2013) chia hết cho 7

 Vậy 1+2+2^2+2^3+...+2^2015 chia hết cho 7

21 tháng 8 2017

71+72+73+...+72016

=(71+72+73+74)+(75+76+77+78)+...+(72013+72014+72015+72016)

=7.400+75.400+...+72013.400

=400.(7+75+...+72013)

vì 400\(⋮\)cho 20 nên 400.(7+75+...+72013)\(⋮\)20

\(\Rightarrow\)71+72+73+...+72016\(⋮\)20

10 tháng 11 2018

\(B=4+4^2+4^3+...+4^{20}\)

     \(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{19}+4^{20}\right)\)

       \(=4.\left(1+4\right)+4^3.\left(1+4\right)+....+4^{19}.\left(1+4\right)\)

         \(=5.\left(4+4^3+...+4^{19}\right)⋮5\)

Vậy B chia hết cho 5

\(C=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{19}+7^{20}\right)\)

     \(=7.\left(1+7\right)+7^3.\left(1+7\right)+....+7^{19}.\left(1+7\right)\)

       \(=7.8+7^3.8+...+7^{19}.8\)

        \(=8.\left(7+7^3+...+7^{19}\right)⋮8\)

Vậy C chia hết cho 8

25 tháng 11 2021

mình chưa học đến thông cảm nhé