Tan 3x = tan 2x có nghiệm là ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm lại:
ĐK: \(x\ne\dfrac{\pi}{2}+k\pi;x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2};x\ne\dfrac{\pi}{6}+\dfrac{k\pi}{3}\)
\(\dfrac{tan^23x-tan^2x}{1-tan^23x.tan^2x}=1\)
\(\Leftrightarrow\dfrac{tan3x-tanx}{1+tan3x.tanx}.\dfrac{tan3x+tanx}{1-tan3x.tanx}=1\)
\(\Leftrightarrow tan2x.tan4x=1\)
\(\Leftrightarrow\dfrac{sin2x.sin4x}{cos2x.cos4x}=1\)
\(\Leftrightarrow sin2x.sin4x=cos2x.cos4x\)
\(\Leftrightarrow\dfrac{1}{2}\left(cos2x-cos6x\right)=\dfrac{1}{2}\left(cos6x+cos2x\right)\)
\(\Leftrightarrow cos6x=0\)
\(\Leftrightarrow6x=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{12}+\dfrac{k\pi}{6}\)
Đối chiếu với điều kiện rồi kết luận.
a/ \(tan3x=tanx\Rightarrow3x=x+k\pi\Rightarrow2x=k\pi\Rightarrow x=\frac{k\pi}{2}\)
b/ \(tan3x+tanx=0\Rightarrow tan3x=-tanx=tan\left(\pi-x\right)\)
\(\Rightarrow3x=\pi-x+k\pi\Rightarrow4x=\pi+k\pi\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{4}\)
c/ \(tan2x-tanx=0\Rightarrow tan2x=tanx\)
\(\Rightarrow2x=x+k\pi\Rightarrow x=k\pi\)
d/ \(tan2x+tanx=0\Rightarrow tan2x=-tanx=tan\left(\pi-x\right)\)
\(\Rightarrow2x=\pi-x+k\pi\Rightarrow3x=\pi+k\pi\Rightarrow x=\frac{\pi}{3}+\frac{k\pi}{3}\)
\(\frac{tan^3x}{sin^2x}-\frac{1}{sinx.cosx}+\frac{cot^3x}{cos^2x}=tan^3x\left(1+cot^2x\right)-\frac{1}{sinx.cosx}+cot^3x\left(1+tan^2x\right)\)
\(=tan^3x+tanx+cot^3x+cotx-\frac{1}{sinx.cosx}\)
\(=tan^3x+cot^3x+\frac{sinx}{cosx}+\frac{cosx}{sinx}-\frac{1}{sinx.cosx}\)
\(=tan^3x+cot^3x+\frac{sin^2x+cos^2x}{sinx.cosx}-\frac{1}{sinx.cosx}\)
\(=tan^3x+cot^3x\)
ĐK: \(x\ne-\dfrac{\pi}{4}+k\pi\)
\(\dfrac{tanx}{1-tan^2x}=\dfrac{1}{2}cot\left(x+\dfrac{\pi}{4}\right)\)
\(\Leftrightarrow\dfrac{2tanx}{1-tan^2x}=tan\left(\dfrac{\pi}{4}-x\right)\)
\(\Leftrightarrow tan2x=tan\left(\dfrac{\pi}{4}-x\right)\)
\(\Leftrightarrow2x=\dfrac{\pi}{4}-x+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{12}+\dfrac{k\pi}{3}\)
1.
\(\Leftrightarrow3x=k\pi\Leftrightarrow x=\frac{k\pi}{3}\)
2.
\(\Leftrightarrow cos5x=0\Leftrightarrow5x=\frac{\pi}{2}+k\pi\Leftrightarrow x=\frac{\pi}{10}+\frac{k\pi}{5}\)
4.
\(cos3x+cosx+cos2x=0\)
\(\Leftrightarrow2cos2x.cosx+cos2x=0\)
\(\Leftrightarrow cos2x\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
5.
\(sin6x+sin2x+sin4x=0\)
\(\Leftrightarrow2sin4x.cos2x+sin4x=0\)
\(\Leftrightarrow sin4x\left(2cos2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{4}\\x=\pm\frac{\pi}{3}+k\pi\end{matrix}\right.\)
6. ĐKXĐ; ...
\(\Leftrightarrow tanx+tan2x=1-tanx.tan2x\)
\(\Leftrightarrow\frac{tanx+tan2x}{1-tanx.tan2x}=1\)
\(\Leftrightarrow tan3x=1\)
\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{3}\)
ĐKXĐ: ...
a.
\(\Leftrightarrow tan3x=tan\left(\frac{\pi}{4}\right)\)
\(\Leftrightarrow3x=\frac{\pi}{4}+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{3}\)
b.
\(cot4x=cot\left(-\frac{\pi}{6}\right)\)
\(\Leftrightarrow4x=-\frac{\pi}{6}+k\pi\)
\(\Leftrightarrow x=-\frac{\pi}{24}+\frac{k\pi}{4}\)
c.
\(\Leftrightarrow2x-\frac{\pi}{3}=\frac{\pi}{6}+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)
với (cosx khác 0)
VT: \(\dfrac{cosx+sinx}{cosx^3}=\dfrac{\dfrac{cosx}{cosx}+\dfrac{sinx}{cosx}}{\dfrac{cosx^3}{cosx}}=\dfrac{1+tanx}{cosx^2}\)
VP:
\(tanx^3+tanx^2+tanx+1=\left(tanx+1\right)\left(tanx^2+1\right)\\ =\left(tanx+1\right).\dfrac{1}{cosx^2+1}\)
Vậy VT=VP
\(\Rightarrow3x=2x+k\pi\Rightarrow x=k\pi\)