Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ne-\dfrac{\pi}{4}+k\pi\)
\(\dfrac{tanx}{1-tan^2x}=\dfrac{1}{2}cot\left(x+\dfrac{\pi}{4}\right)\)
\(\Leftrightarrow\dfrac{2tanx}{1-tan^2x}=tan\left(\dfrac{\pi}{4}-x\right)\)
\(\Leftrightarrow tan2x=tan\left(\dfrac{\pi}{4}-x\right)\)
\(\Leftrightarrow2x=\dfrac{\pi}{4}-x+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{12}+\dfrac{k\pi}{3}\)
a: tan x(cot^2x-1)
\(=\dfrac{1}{cotx}\left(cot^2x-cotx\cdot tanx\right)\)
=cotx-tanx/cotx=cotx(1-tan^2x)
b: \(tan^2x-sin^2x=\dfrac{sin^2x}{cos^2x}-sin^2x\)
\(=sin^2x\left(\dfrac{1}{cos^2x}-1\right)=sin^2x\cdot\dfrac{sin^2x}{cos^2x}=sin^2x\cdot tan^2x\)
c: \(\dfrac{cos^2x-sin^2x}{cot^2x-tan^2x}=\dfrac{cos^2x-sin^2x}{\dfrac{cos^2x}{sin^2x}-\dfrac{sin^2x}{cos^2x}}\)
\(=\left(cos^2x-sin^2x\right):\dfrac{cos^4x-sin^4x}{sin^2x\cdot cos^2x}\)
\(=\dfrac{sin^2x\cdot cos^2x}{1}=sin^2x\cdot cos^2x\)
=>sin^2x*cos^2x-cos^2x=cos^2x(sin^2x-1)
=-cos^2x*cos^2x=-cos^4x
=>ĐPCM
a: \(1+tan^2x=1+\left(\dfrac{sinx}{cosx}\right)^2\)
\(=1+\dfrac{sin^2x}{cos^2x}=\dfrac{cos^2x+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}\)
b: \(tanx+cotx=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}\)
\(=\dfrac{sin^2x+cos^2x}{sinx\cdot cosx}=\dfrac{1}{sinx\cdot cosx}\)
cos2x.cos4x = sin2x.sin4x
⇔ cos6x = 0 chứ
Làm lại:
ĐK: \(x\ne\dfrac{\pi}{2}+k\pi;x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2};x\ne\dfrac{\pi}{6}+\dfrac{k\pi}{3}\)
\(\dfrac{tan^23x-tan^2x}{1-tan^23x.tan^2x}=1\)
\(\Leftrightarrow\dfrac{tan3x-tanx}{1+tan3x.tanx}.\dfrac{tan3x+tanx}{1-tan3x.tanx}=1\)
\(\Leftrightarrow tan2x.tan4x=1\)
\(\Leftrightarrow\dfrac{sin2x.sin4x}{cos2x.cos4x}=1\)
\(\Leftrightarrow sin2x.sin4x=cos2x.cos4x\)
\(\Leftrightarrow\dfrac{1}{2}\left(cos2x-cos6x\right)=\dfrac{1}{2}\left(cos6x+cos2x\right)\)
\(\Leftrightarrow cos6x=0\)
\(\Leftrightarrow6x=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{12}+\dfrac{k\pi}{6}\)
Đối chiếu với điều kiện rồi kết luận.