K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2015

có dạng này nhưng là số chẵn nhân chãn

27 tháng 12 2015

2S=2/1.3+2/3.5+....+2/99.101

2S=1-1/3+1/3-1/5+....+1/99-1/101

2S=1-1/101

2S+1/101=1-1/101+1/101=1

Nho tick nha

27 tháng 12 2015

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(S=1-\frac{1}{101}=\frac{100}{101}\)

\(2S+\frac{1}{101}=\frac{100}{101}\)

\(S=2.\frac{100}{101}+\frac{1}{101}\)

\(\Rightarrow S=\frac{201}{101}\)

****

6 tháng 1 2016

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(2S=1-\frac{1}{101}\Rightarrow2S+\frac{1}{101}=1\)

24 tháng 12 2015

\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.........+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}\)

\(2S+\frac{1}{101}=1-\frac{1}{101}+\frac{1}{101}=1\)

24 tháng 12 2015

Nguyễn Nhật Minh đúng rồi

A=1-1/3+1/3-1/5+....+1/99-1/100

A=1-1/100=99/100

200A= 99/100   .200=198

27 tháng 12 2015

\(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\)

\(2S=1-\frac{1}{101}=\frac{100}{101}\)

\(S=\frac{50}{101}\)

9 tháng 1 2016

\(S=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\right)\)

\(S=\frac{1}{2}.\left(1-\frac{1}{101}\right)=\frac{1}{2}\times\frac{100}{101}=\frac{50}{101}\)

9 tháng 1 2016

\(S=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.100}\)

\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(S=1-\frac{1}{100}\)

\(S=\frac{99}{100}\)

5 tháng 2 2016

1-1/100 , ủng hộ mk nha

5 tháng 2 2016

=>2S=2/1.3+2/3.5+....+2/99.100

ơ bạn nhầm đề bài à