Bài II (3,0 điểm) Cho 2 đường thẳng: (d1): y= +2x 4 và (d2): y=− +x 1 .
1) Tìm tọa độ giao điểm A của đường thẳng (d1) và đường thẳng (d2).
2) Xác định hệ số a, b của đường thẳng y ax b= + (a0) biết đường thẳng đó song song với đường thẳng (d1) và đi qua điểm M (-1; 3).
3) Gọi B và C lần lượt là giao điểm của đường thẳng (d1) và (d2) với trục hoành. Tính diện tích tam giác ABC.
1, PT hoành độ giao điểm: \(2x+4=-x+1\Leftrightarrow x=-1\Leftrightarrow y=0\)
\(\Leftrightarrow A\left(-1;0\right)\)
Vậy \(A\left(-1;0\right)\) là tọa độ giao điểm 2 đths
2, Đt cần tìm //(d1)\(\Leftrightarrow a=2;b\ne4\)
Đt cần tìm đi qua M(-1;3) nên \(-a+b=3\Leftrightarrow-2+b=3\Leftrightarrow b=5\left(tm\right)\)
Vậy đths là \(y=2x+5\)
3, PT giao điểm d1 với trục hoành là \(y=0\Leftrightarrow2x+4=0\Leftrightarrow x=-2\Leftrightarrow B\left(-2;0\right)\)
PT giao điểm d2 với trục hoành là \(y=0\Leftrightarrow-x+1=0\Leftrightarrow x=1\Leftrightarrow C\left(1;0\right)\)
Do đó \(BC=\left|-2\right|+\left|1\right|=3;OA=\left|-1\right|=1\)
Vậy \(S_{ABC}=\dfrac{1}{2}OA\cdot BC=\dfrac{3}{2}\left(đvdt\right)\)
Bài I (3,0 điểm) Cho hai biểu thức A= x−9 và B= 3 + 2 +x−5 x−3 với x 0,x 9.
x−3 x−3 x+3 x−9
1) Khi x=81, tính giá trị của biểu thức A.
2) Rút gọn biểu thức B.
3) Tìm x để A = 5.
4) Với x 9, tìm giá trị nhỏ nhất của biểu thức P AB= .
giải giúp nốt cho minh luon nhe