1.Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
2.Chứng minh rằng:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4
4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]
4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)
4A = (n – 1).n(n + 1).(n + 2)
A = (n – 1).n(n + 1).(n + 2) : 4.
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(=\frac{1}{4}-\frac{1}{2\left(n+1\right)\left(n+2\right)}\) \(< \frac{1}{4}\)
\(N=1.2.3+2.3.4+...+n\left(n+1\right)\left(n+2\right)\)
\(4N=1.2.3.4+2.3.4.4+...+4n\left(n+1\right)\left(n+2\right)\)
\(4N=1.2.3.4+2.3.4.\left(5-1\right)+....+n\left(n+1\right)\left(n+2\right)\left[\left(n+3\right)-\left(n-1\right)\right]\)
\(4N=1.2.3.4+2.3.4.5-1.2.3.4+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(4N=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(4N+1=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+2n+n+2\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
\(=\left(n^2+3n+1-1\right)\left(n^2+3n+1+1\right)+1\)
\(=\left(n^2+3n+1\right)^2-1+1=\left(n^2+3n+1\right)^2=t^2\)(1 số bất kì thỏa mãn)
Vậy \(4N+1\) là số chính phương (đpcm)
A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)
3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)
3A-A= \(1-\frac{1}{3^{2008}}\)
ta có:
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4
= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]
= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)
B = 1.2.3 + 2.3.4 + ... + (n-1)n(n+1)
=> 4B = 1.2.3.4 + 2.3.4.4 + ... + (n-1)n(n+1)4
= 1.2.3.(4-0) + 2.3.4.(5-1) + ... + ((n-1)n(n+1)[(n+2) - (n-2)
= 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)
= (n-1)n(n+1)(n+2)
=> B = \(\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)