-5/25=-4/5-x
mong mọi người giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)25/(x+1)-1 1/6=-1/3-0,5`
`=>25/(x+1)=-1/3-1/2+1+1/6`
`=>25/(x+1)=1/3`
`=>75=x+1`
`=>x=74`
Vậy `x=74`
`b)(2x+25 3/5)^2-9/25=0`
`=>(2x+128/5)=9/25`
`**2x+128/5=3/5`
`=>2x=-125/5=-25`
`=>x=-25/2`
`**2x+128/5=-3/5`
`=>2x=-131/5`
`=>x=-131/10`
Bài 2:
a)|x| < 3
x\(\in\){-2;-1;0;1;2}
b)|x - 4 | < 3
x\(\in\){ 6 ; 5 ; 4 ; 3 ; 2 }
c) | x + 10 | < 2
x\(\in\){ -2 ; -10 }
Bài 1:
A = 1 + 2 - 3 + 4 + 5 - 6 +...+98 - 99
A = (1 + 4 + 7 +...+97) + [(2-3)+(5-6)+...+(98-99)]
A = 1617 + [(-1)+(-1)+...+(-1)]
A = 1617 + (-49)
A = +(1617-49) = A = 1568
B = - 2 - 4 + 6 - 8 + 10 + 12 - .... + 60
B =
2)
a) \(x\in\left\{2;1;0;-1;-2\right\}\)
b) \(x\in\left\{6;-6;5;-5;4\right\}\)
c) \(x\in\left\{-9;-11;-10\right\}\)
3)
\(\left(a;b\right)\in\left\{\left(0;1\right);\left(0;-1\right);\left(1;0\right);\left(-1;0\right)\right\}\)
11/2. 4 5/3- 2 5/3. 11/2
= 11/2. (4 5/3- 2 5/3)
= 11/2. 2
= 22/2= 11
Chúc bạn học tốt nhoa^^
\(\frac{11}{2}\) . 4 . \(\frac{5}{3}\) - 2 . \(\frac{5}{3}\) . \(\frac{11}{2}\)
= \(\frac{110}{3}\)- \(\frac{55}{3}\)
= \(\frac{55}{3}\)
\(2,\\ a,\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(x\ge1\right)\\ \Leftrightarrow2\sqrt{x-1}+3\sqrt{x-1}-5\sqrt{x-1}=7\\ \Leftrightarrow0\sqrt{x-1}=7\Leftrightarrow x\in\varnothing\\ b,\sqrt{2x^2-3}=4\left(x\le-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\le x\right)\\ \Leftrightarrow2x^2-3=16\\ \Leftrightarrow x^2=\dfrac{19}{2}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)
\(1,\\ A=\sqrt{5+4x}+\sqrt{7-3x}\\ ĐKXĐ:\left\{{}\begin{matrix}5+4x\ge0\\7-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{5}{4}\\x\le\dfrac{7}{3}\end{matrix}\right.\)
(x -1)x2 - 4x(x - 1) + 4(x - 1)
= (x - 1)x - 4(x - 1)2
= (x - 1)[(x - 4(x - 1)]
= (x - 1)(-3x + 4)
Thay x = 3 vào biểu thức :
(3 - 1)(-3.3 + 4) = 2.(-5) = -10
Bài 1:
Vì $a\geq 1$ nên:
\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)
\(\geq 1+\sqrt{4}+0=3\)
Ta có đpcm
Dấu "=" xảy ra khi $a=1$
Bài 2:
ĐKXĐ: x\geq -3$
Xét hàm:
\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)
\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)
Do đó $f(x)$ đồng biến trên TXĐ
\(\Rightarrow f(x)=0\) có nghiệm duy nhất
Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.
A) x + 4 = -16
x = -16 - 4
x = -20
Vậy x = -20
b) 12- ( x - 5 ) =5.4
12 -x -5 = 20
x = 7 - 20
x = -13
Vậy x= -13
c) (-2)x - ( x - 17 ) = 34 - ( -x + 25 )
( -2 )x - x + 17 = 34 + x - 25
-3x + 17 = 11 + x
-3x - x = 11 - 17
-4x = -6
x = 1,5
Vậy x = 1,5
d) 17x - ( -16x - 37 ) = 2x + 43
17x + 16x - 2x = 43 -37
30x = 6
x = 0,2
Vậy x = 0,2
Ta có \(\frac{-5}{25}=\frac{-4}{5-x}\)
=> (5- x).(-5) = -4.25
=> 5 - x = 20
=> x = -15
Vậy x = -15
\(\frac{-5}{25}=\frac{-4}{5}-x\)
\(=>x=\frac{-4}{5}+\frac{-5}{25}\)
\(=>x=-1\)