K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2021

Theo Cô si       4x+\frac{1}{4x}\ge2  , đẳng thức xảy ra khi và chỉ khi   4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}). Do đó

                                         A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016

                                        A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014

                                        A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014

Hơn nữa    A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.  \Leftrightarrow x=\dfrac{1}{4} .

Vậy  GTNN  =  2014

16 tháng 11 2021

\(a,\Leftrightarrow y=0;x=2\Leftrightarrow2m-2+m-2=0\Leftrightarrow m=\dfrac{4}{3}\)

\(b,\) PT giao Ox: \(\Leftrightarrow\left(m-1\right)x=2-m\Leftrightarrow x=\dfrac{2-m}{m-1}\Leftrightarrow A\left(\dfrac{2-m}{m-1};0\right)\Leftrightarrow OA=\left|\dfrac{2-m}{m-1}\right|\)

PT giao Oy: \(y=m-2\Leftrightarrow B\left(0;m-2\right)\Leftrightarrow OB=\left|m-2\right|\)

\(S_{OAB}=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{2}OA\cdot OB=\dfrac{2}{3}\Leftrightarrow\left|\dfrac{2-m}{m-1}\cdot\left(m-2\right)\right|=\dfrac{4}{3}\\ \Leftrightarrow\left|\dfrac{-\left(m-2\right)^2}{m-1}\right|=\dfrac{4}{3}\Leftrightarrow\left[{}\begin{matrix}\dfrac{-\left(m-2\right)^2}{m-1}=\dfrac{4}{3}\left(1\right)\\\dfrac{-\left(m-2\right)^2}{1-m}=\dfrac{4}{3}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow-3m^2+12m-12=4m-4\\ \Leftrightarrow3m^2-9m+9=0\\ \Leftrightarrow m\in\varnothing\\ \left(2\right)\Leftrightarrow-3m^2+12m-12=4-4m\\ \Leftrightarrow3m^2-16m+16=0\\ \Leftrightarrow\left[{}\begin{matrix}m=4\\m=\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m=4\\m=\dfrac{4}{3}\end{matrix}\right.\) thỏa đề

\(c,\) Gọi \(E\left(x_0;y_0\right)\) là điểm cần tìm

\(\Leftrightarrow\left(m-1\right)x_0+m-2=y_0\\ \Leftrightarrow mx_0+m-x_0-y_0-2=0\\ \Leftrightarrow m\left(x_o+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-2-x_0=-1\end{matrix}\right.\Leftrightarrow E\left(-1;-1\right)\)

5 tháng 7 2020

a) y=(m-1)x+m+3   (d1)  (a=m-1;b=m+3)

y=-2x+1  (d2)   (a' =-2;b' =1)

vì hàm số (d1) song song với hàm số  (d2) nên

\(\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Leftrightarrow\hept{\begin{cases}m-1=-2\\m+3\ne1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=-1\\m\ne-2\end{cases}}\)

vậy với m= -1 thì hàm số  (d1)  song song với hàm số  (d2) 

b) vì hàm số (d1) đi qua điểm  (1;-4) nên 

x=1 ; y= -4

thay vào (d1) ta có 

-4=m-1+m+3        (mình làm tắt ko nhân với 1 nha)

-4=2m+2

-2=2m

m=-1

16 tháng 11 2021

\(a,\) Đồng biến \(\Leftrightarrow m-2>0\Leftrightarrow m>2\)

Nghịch biến \(\Leftrightarrow m-2< 0\Leftrightarrow m< 2\)

\(b,\) PT giao Ox: \(y=0\Leftrightarrow\left(m-2\right)x=-\left(m+3\right)\Leftrightarrow x=\dfrac{m+3}{2-m}\Leftrightarrow A\left(\dfrac{m+3}{2-m};0\right)\Leftrightarrow OA=\left|\dfrac{m+3}{2-m}\right|\)

PT giao Oy: \(x=0\Leftrightarrow y=m+3\Leftrightarrow B\left(0;m+3\right)\Leftrightarrow OB=\left|m+3\right|\)

Theo đề: \(S_{OAB}=\dfrac{1}{2}OA\cdot OB=1\)

\(\Leftrightarrow\left|\dfrac{m+3}{2-m}\right|\left|m+3\right|=2\\ \Leftrightarrow\dfrac{\left(m+3\right)^2}{\left|2-m\right|}=2\\ \Leftrightarrow2\left|2-m\right|=\left(m+3\right)^2\\ \Leftrightarrow\left[{}\begin{matrix}2\left(2-m\right)=\left(m+3\right)^2\left(m\le2\right)\\2\left(m-2\right)=\left(m+3\right)^2\left(m>2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m^2+8m+5=0\left(m\le2\right)\\m^2+4m+13=0\left(vô.n_0\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=-4+\sqrt{11}\left(n\right)\\m=-4-\sqrt{11}\left(n\right)\end{matrix}\right.\)

Vậy ...

31 tháng 5 2017

Hàm số bậc nhất

Hàm số bậc nhất