Cho ΔABC, gọi I là giao điểm 3 đường phân giác trong. Qua I vẽ đường thẳng vuông góc AI cắt AB, AC tại M, N.
a) Cm : \(\frac{BM}{CN}+\frac{BI^2}{CI^2}\)
b) Cm: \(\text{BM.AC +CN.AB + AI^2 =AB.AC }\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a , Tứ giác ANMI có : góc MAN = góc ANI = góc AMI = 90o nên là hình chữ nhật .
→ AI = MN
b, ΔABC vuông tại A có đường trung tuyến AI ứng với cạnh huyền nên :
AI = IC
→ ΔAIC cân tại I
→ Góc IAN = góc ICN
Xét ΔAIN và ΔCIN có :
Góc INA = Góc INC = 90o
AI = IC
Góc IAN = góc ICN
→ Δ AIN = Δ CIN ( cạnh huyền - góc nhọn )
→ AN = NC
Ta có : IN = ND
AN = NC
→ Tứ giác AICD là hình bình hành mà có hai đường chéo ID và AC vuông góc với nhau nên là hinhg thoi .
b, từ cm trên suy ra :△BMI ∼ △INC
⇒ \(\frac{BM}{IN}=\frac{MI}{NC}\)
⇒ BM.CN = MI.NI
ta có : △AMN là tam giác cân
⇒ MI = NI
⇒ BM.CN = \(IM^2\)
ta lại có : △AIM vuông
⇒ \(IM^2\)= \(AM^2-AI^2\) ⇒ BM.CN = \(AM^2-AI^2\)
\(=\)\(AM.AN-AI^2=\left(AB-BM\right)\left(AC-CN\right)-AI^2\)
\(=\)\(AB.AC-AB.CN-BM.AC+BM.CN-AI^2\)
⇒ \(BM.AC+CN.AB+AI^2=AB.AC\)
giải câu b giùm mk vs