Chứng minh rằng với mọi a, b, c ta có: \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{a^2}{c^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{a}{c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như thế này mới đúng chứ \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\)
Áp dụng BĐT Cosi:
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2.\dfrac{a}{c};\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2.\dfrac{b}{a};\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2.\dfrac{c}{b}\)
\(\Rightarrow2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\)
Đẳng thức xảy ra khi \(a=b=c>0\)
a/(b+c) + b/(a+c) + c/(a+b) = a^2/(ab+ac) + b^2/(ba+bc) + c^2/(ac+bc) >=
(a+b+c)^2/(2.(ab+bc+ac) (buhihacopxki dạng phân thức)
>= (3.(ab+bc+ac)/(2(ab+bc+ac) =3/2
a^2/(b^2+c^2) + b^2/(a^2+c^2) + c^2/(a^2+b^2) >= (a+b+c)^2/(2.(a^2+b^2+c^2) (buhihacopxki dạng phân thức)
>= 3(a^2+b^2+c^2) / 2(a^2+b^2+c^2) >=3/2
\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}-\dfrac{3}{2}\ge0\)
\(\Leftrightarrow\left(\dfrac{a}{b+c}-\dfrac{1}{2}\right)+\left(\dfrac{b}{c+a}-\dfrac{1}{2}\right)+\left(\dfrac{c}{a+b}-\dfrac{1}{2}\right)\ge0\)
\(\Leftrightarrow\left(\dfrac{2a-b-c}{2\left(b+c\right)}\right)+\left(\dfrac{2b-a-c}{2\left(a+c\right)}\right)+\left(\dfrac{2c-a-b}{2\left(a+b\right)}\right)\ge0\)
\(\Leftrightarrow\dfrac{a-b+a-c}{2\left(b+c\right)}+\dfrac{b-a+b-c}{2\left(a+c\right)}+\dfrac{c-a+c-b}{2\left(a+b\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2\left(b+c\right)}+\dfrac{a-c}{2\left(b+c\right)}+\dfrac{b-a}{2\left(a+c\right)}+\dfrac{b-c}{2\left(a+c\right)}+\dfrac{c-a}{2\left(a+b\right)}+\dfrac{c-b}{2\left(a+b\right)}\ge0\)\(\Leftrightarrow\left(a-b\right)\left[\dfrac{1}{2\left(b+c\right)}-\dfrac{1}{2\left(a+c\right)}\right]+\left(a-c\right)\left[\dfrac{1}{2\left(b+c\right)}-\dfrac{1}{2\left(a+b\right)}\right]+\left(b-c\right)\left[\dfrac{1}{2\left(a+c\right)}-\dfrac{1}{2\left(a+b\right)}\right]\ge0\)
ta có: a,b,c là 3 số dương bất kì nên ta giả sử \(a\ge b\ge c\)
\(\Rightarrow a+c\ge b+c\)
\(\Leftrightarrow2\left(a+c\right)\ge2\left(b+c\right)\)
\(\Leftrightarrow\dfrac{1}{2\left(a+c\right)}\le\dfrac{1}{2\left(b+c\right)}\)
\(\Leftrightarrow\dfrac{1}{2\left(a+c\right)}-\dfrac{1}{2\left(b+c\right)}\ge0\)
Mà \(a\ge b\Rightarrow a-b\ge0\)
\(\Rightarrow\left(a-b\right)\left[\dfrac{1}{2\left(b+c\right)}-\dfrac{1}{2\left(a+c\right)}\right]\ge0\left(1\right)\)
Chứng minh tương tự, ta có:
\(\left(a-c\right)\left[\dfrac{1}{2\left(b+c\right)}-\dfrac{1}{2\left(a+b\right)}\right]\ge0\left(2\right)\)
\(\left(b-c\right)\left[\dfrac{1}{2\left(a+c\right)}-\dfrac{1}{2\left(a+b\right)}\right]\ge0\left(3\right)\)
Cộng từng vế (1);(2);(3) \(\Rightarrow\) luôn đúng
\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)
\(\dfrac{a^3}{b^3}+\dfrac{a^3}{b^3}+1+\dfrac{b^3}{c^3}+\dfrac{b^3}{c^3}+1+\dfrac{c^3}{a^3}+\dfrac{c^3}{a^3}+1\ge3\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\)
\(\Leftrightarrow2\left(\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\right)\ge3\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)-3\)
\(\ge2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)+3-3=2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\)
\(\Leftrightarrow\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)
giả sử \(a>b>c>0\) thì ta có :
\(\dfrac{a^2}{b^2}\left(\dfrac{a}{b}-1\right)+\dfrac{b^2}{c^2}\left(\dfrac{b}{c}-1\right)+\dfrac{c^2}{a^2}\left(\dfrac{c}{a}-1\right)\ge2\dfrac{a}{b}+\dfrac{c^2}{a^2}\left(\dfrac{c}{a}-1\right)\)
\(=\dfrac{2a}{b}+\dfrac{c^3}{a^3}-\dfrac{c^2}{a^2}\ge0\)
làm tương tự cho trường hợp \(c>b>a>0\) ; \(b>a>c\) và \(b>c>a\)
\(\Rightarrow\left(đpcm\right)\)
Ta có đánh giá sau với a không âm:
\(\dfrac{a}{1+a^2}\le\dfrac{36a+3}{50}\)
Thật vậy, BĐT tương đương:
\(\left(36a+3\right)\left(a^2+1\right)\ge50a\)
\(\Leftrightarrow\left(3a-1\right)^2\left(4a+3\right)\ge0\) (luôn đúng)
Tương tự: \(\dfrac{b}{1+b^2}\le\dfrac{36b+3}{50}\) ; \(\dfrac{c}{1+c^2}\le\dfrac{36c+3}{50}\)
Cộng vế: \(VT\le\dfrac{36\left(a+b+c\right)+9}{50}=\dfrac{9}{10}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Ta chứng minh bđt phụ \(\dfrac{a}{1+a^2}\le\dfrac{3}{10}+\dfrac{18}{25}\left(a-\dfrac{1}{3}\right)\)
Thật vậy bđt trên \(\Leftrightarrow\dfrac{-3a^2+10a-3}{10\left(1+a^2\right)}-\dfrac{18}{25}\left(a-\dfrac{1}{3}\right)\le0\)
\(\Leftrightarrow\left(a-\dfrac{1}{3}\right)\left[\dfrac{3\left(3-a\right)}{10\left(1+a^2\right)}-\dfrac{18}{25}\right]\le0\)
\(\Leftrightarrow-\dfrac{36\left(a-\dfrac{1}{3}\right)^2\left(\dfrac{3}{4}+a\right)}{50\left(1+a^2\right)}\le0\) ( luôn đúng với mọi \(a\)\(\ge\)0)
Tương tự cũng có:\(\dfrac{b}{1+b^2}\le\dfrac{3}{10}+\dfrac{18}{25}\left(b-\dfrac{1}{3}\right)\); \(\dfrac{c}{1+c^2}\le\dfrac{3}{10}+\dfrac{18}{25}\left(c-\dfrac{1}{3}\right)\)
Cộng vế với vế => VT\(\le\dfrac{9}{10}+\dfrac{18}{25}\left(a+b+c-1\right)=\dfrac{9}{10}\)
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{3}\)