K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2015

a; Vì Ư(111)={1;3;37;111} nên 111 ko phải số nguyên tố

   A=abc +bca+cab

  A=a x100+bx10+c+b x100+c x10+a +c x100+a x10+b

  A=a x111+b x111+c x111

 A=111 x(a+b+c)

 A=37 x3 x(a+b+c) : hết cho 37

tick nha nhanh nhất nè

mà đây là toán 6 mà

6 tháng 3 2020

a, 3n + 2 - 2n + 2 + 3n - 2n

= 3n(32 + 1) - 2n(22 + 1)

= 10.3n - 5.2n

= 10.3n - 10.2n - 1

= 10(3n - 2n - 1) chia hết cho 10

b, S = abc + bca + cab

= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b

= 111a + 111b + 11c

= 111(a + b + c)

= 3.37(a+b+c)

giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn trở lên 

=> 3(a + b + c) chia hết cho 37

=> a + b + c chia hết cho 37

vì a;b;c là chữ số => a + b + c lớn nhất = 27

=> vô lí

vậy S không là số chính phương

6 tháng 3 2020

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(3^{n+2}+3^n-2^n-2^{n+2}\)

=\(\left(3^{n+2}+3^n\right)-\left(2^n-2^{n+2}\right)\)

\(\left(3^n.3^2+3^n\right)-\left(2^n+2^n.2^2\right)\)

\(3^n.\left(3^2+1\right)-2^n.\left(1+2^2\right)\)

=\(3^n.10-2^{n-1}.5.2\)

\(3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10

suy ra \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10

15 tháng 7 2015

(abc) chia hết cho 37=> 100.a + 10.b + c chia hết cho 37 
=> 1000.a + 100.b + 10.c chia hết cho 37 
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
=> 100.b + 10.c + a = (bca) chia hết cho 37 

4 tháng 8 2016

 (abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37 
---> 1000.a + 100.b + 10.c chia hết cho 37 
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
---> 100.b + 10.c + a = (bca) chia hết cho 37 

(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37 
---> 1000.b + 100.c + 10.a chia hết cho 37 
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37) 
---> 100.c + 10.a + b = (cab) chia hết cho 37

25 tháng 11 2021

Số (abc) chia hết cho 37 => 100a + 10b + c chia hết cho 37 =>(Nhân 10 vô) 1000a + 100b + 10c chia hết cho 37 (1). Trừ cho 999a thì (1) vẫn chia hết cho 37 do 999 chia hết cho 37 từ đó suy ra đpcm!

8 tháng 12 2014

                   Tớ giải hộ bạn câu 1 nhé. (Câu 2 tớ cũng đăng lên olm rồi <_>)

1.                                                  Giải

Gọi bốn số tự nhiên tùy ý là : A1; A2; A3; A4.

Khi chia : A1; A2; A3; A4 cho 3, ta được:

A1= 3 x k1 + r1 với: 0  r< 3

A2=3 x k2 + r2 với: 0 ≥ r2 < 3

A3=3 x k3 + r3 với: 0 ≥ r3 <3

A4=3 x k4 + r4 với: ≥ r4 <3

Vì khi chia cho 3 các số dư r1; r2; r3; r4 chỉ nhận 1 trong 3 giá trị: 0; 1; 2. Nên chắc chắn có ít nhất 2 số bằng nhau.

Ta lấy: r1 = r23k2

=>Ta có: A1 - A2 = (3k1 + r1) - ( 3k2 + r2) = (3k1 -3k2) chia hết cho 3.

=>Trong bốn số tự nhiên tùy ý, có ít nhất 2 số có hiệu chia hết cho 3.

15 tháng 12 2017

có : abc + cba +cab : hết 111

100 a +10b+1c+100b+10c+1a+100c+10b+1a

=(100 a +10b+1c) + (100b+10c+1a) + ( 100c+10b+1a ) 

= 111 abc + 111bca+111cab : hết 111 

= 111 . ( abc + bca + cab ) : hết 111

vậy , abc + bca + cab : hết cho 111 

mất rất nhìu thời gian TT  TT

15 tháng 12 2017

abc+bca+cab=100a+10b+c+100b+10c+a+100c+10a+b

=111a+111b+111c=111(a+b+c)chia hết cho 111 (đpcm)

(abc+bca+cab)

=100a+10b+c+100b+10c+a+100c+10a+b

=111a+111b+111c

=111(a+b+c) chia hết cho a, b, c-> Điều phải chứng minh

4 tháng 8 2016

(abc+bca+cab)

=100a+10b+c+100b+10c+a+100c+10a+b

=111a+111b+111c

=111(a+b+c) chia hết a+b+c

6 tháng 8 2018

abc + bca + cab 

= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b

= (100a + a + 10a) + (10b + 100b + b) + (c + 10c + 100c)

= 111a + 111b + 111c

= 111(a + b + c) 

= 37.3(a + b + c) \(⋮\) 37 (đpcm)

7 tháng 8 2018

ta có:abc+bca+cab=111.a

Vi 111 chia het cho 7 nen abc+bac+cab

k đ nha

10 tháng 12 2017

đặt A = abc = ( 102 . a + 10 . b + c ) \(⋮\)37

\(\Rightarrow\)10A = ( 103 . a + 102 . b + 10c ) \(⋮\)37

10A = 102 . b + 10 . c + a + 999a = bca + 999a 

vì 999a = 37 . 27a \(⋮\)37  ; 10A \(⋮\)37

suy ra : bca \(⋮\)37

tương tự ta có : 10bca \(⋮\)37, 999b \(⋮\)37

suy ra : cab \(⋮\)37