Có 16 nhà Toán học, trong đó có 4 ngườiViệt,4 người Nhật, 4 người Mỹ và 4 người Pháp. Cần chọn 6 người đi dự hội nghị Toán học quốc tế. Hỏi có mấy cách chọn sao cho :
a) Mỗi nước đều có đại biểu?
b) Không có nước nào có hơn hai đại biểu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Chọn 1 nam từ 9 nam có 9 cách
Chọn 1 nữ từ 3 nữ có 3 cách
\(\Rightarrow\) Có \(9.3=27\) cách chọn nhóm 1 nam 1 nữ
b.
Chọn 2 nhà toán học từ 8 nahf toán học: \(C_8^2\) cách
Chọn 2 nhà vật lý từ 4 nhà vật lý: \(C_4^2\) cách
\(\Rightarrow C_8^2.C_4^2\) cách lập
c.
Các trường hợp thỏa mãn: (1 nhà toán học nữ, 2 nhà vật lý nam), (1 nhà toán học nữ, 1 nhà toán học nam, 1 nhà vật lý nam), (2 nhà toán học nữ, 1 nhà vật lý nam)
\(\Rightarrow C_3^1.C_4^2+C_3^1.C_5^1.C_4^1+C_3^2.C_4^1\) cách
Chọn D
Số phần tử của không gian mẫu là: .
Gọi A là biến cố “chọn được 4 đại biểu sao cho mỗi Quốc gia đều có ít nhất 1 đại biểu và có cả đại biểu nam và nữ.”
Trường hợp 1: có 2 đại biểu Việt Nam, 1 đại biểu Mỹ, 1 đại biểu Anh.
Số cách chọn ra 4 đại biểu có cả đại biểu nam và đại biểu nữ thỏa mãn trường hợp 1 là: cách chọn.
Trường hợp 2: Có 1 đại biểu Việt Nam, 2 đại biểu Mỹ,1 đại biểu Anh.
Số cách chọn ra 4 đại biểu có cả đại biểu nam và đại biểu nữ thỏa mãn trường hợp 2 là:
Trường hợp 3: Có 1 đại biểu Việt Nam, 1 đại biểu Mỹ, 2 đại biểu Anh.
Số cách chọn ra 4 đại biểu có cả đại biểu nam và đại biểu nữ thỏa mãn trường hợp 3 là: .
Nên tổng số cách chọn thỏa mãn yêu cầu là: 581 + 678 + 678 = 1937.
Vậy xác suất của biến cố A là: .
Chọn B
Số phần tử của không gian mẫu
Gọi A là biến cố: “chọn được 4 đại biểu để trong đó mỗi nước đều có 1 đại biểu và có cả đại biểu
nam và đại biểu nữ”
Số cách chọn 4 người đủ các nước tức là có một nước có 2 người, hai nước còn lại, mỗi nước 1 người là:.
Số cách chọn 4 người đủ các nước và toàn đại biểu nam là:
Số cách chọn 4 người đủ các nước và toàn đại biểu nữ là:
Số phần tử của A là n(A) = 2499- 12 - 550 = 1937
Xác suất của biến cố A:
Chọn A là một học sinh trong hội nghị mời vào bàn. A có 50 người quen.
Chọn B và C là hai bạn không quen nhau trong nhóm này.
Nếu không thể chọn được B và C thì tất cả 50 người trong nhóm quen A đều quen nhau. Khi đó có thể lấy ba bạn bất kỳ xếp vào bàn với A, thỏa mãn điều kiện bài toán.
Trường hợp chọn được B và C, khi đó hội nghị có A, B quen A, C quen A ngồi ở bàn và 97 người khác. B còn 49 người quen khác A, C còn 49 người quen khác A, tổng cộng là 98>97. Như vậy B và C ít nhất có 1 người quen chung. Chọn D là một trong số người quen chung của B và C mời vào bàn. Ta có A,B,D,C thỏa mãn điều kiện bài toán.
a/ Chọn 4 đại biểu từ 4 nước, mỗi nước một đại biểu, có \(4.4.4.4=256\) cách
Còn lại 2 đại biểu chọn bất kì từ 12 đại biểu còn lại: \(C_{12}^2=66\) cách
Vậy có \(256.66=...\) cách
b/
Số cách chọn mỗi đoàn có ko nhiều hơn 2 đb, trong đó 1 đoàn ko có đb nào: \(3.\left(C_4^2\right)^3=...\)
Số cách chọn mỗi đoàn có ko nhiều hơn 2 đb, trong đó đoàn nào cũng có đb: \(4^3\left(C_{12}^2-3.C_4^2\right)=...\)
Số cách chọn thỏa mãn: \(3.\left(C_4^2\right)^3+4^3\left(C_{12}^2-3.C_4^2\right)=...\)