Giải pt:
1-3sinxcosx -sinx +cos^2 (x) +cosx=0.
Giải giúp mình với ạ. Mình đang cần gấp ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
sin 2x=cos xsin 2x=cos x
⇔sin 2x=sin (π2−x)⇔sin 2x=sin (π2-x)
⇔⇔ ⎡⎢⎣2x=π2−x+k2π (k∈Z)2x=π−π2+x+k2π (k∈Z)[2x=π2−x+k2π (k∈Z)2x=π−π2+x+k2π (k∈Z)
⇔⇔ ⎡⎢⎣3x=π2+k2π (k∈Z)x=π2+k2π (k∈Z)[3x=π2+k2π (k∈Z)x=π2+k2π (k∈Z)
⇔⇔ ⎡⎢ ⎢⎣x=π6+k2π3 (k∈Z)x=π2+k2π (k∈Z)[x=π6+k2π3 (k∈Z)x=π2+k2π (k∈Z)
Vậy S={π6+k2π3 (k∈Z),π2+k2π (k∈Z)
a/ \(y=sin2x+\left(\sqrt{3}+1\right)cos2x+sin^2x-cos^2x-1\)
\(=sin2x+\sqrt{3}cos2x-1=2sin\left(2x+\frac{\pi}{3}\right)-1\)
Do \(-1\le sin\left(2x+\frac{\pi}{3}\right)\le1\Rightarrow-3\le y\le1\)
b/ \(y=2sin^2x-2cos^2x-3sinx.cosx-1\)
\(=-2cos2x-\frac{3}{2}sin2x-1=-\frac{5}{2}\left(\frac{3}{5}sinx+\frac{4}{5}cosx\right)-1\)
\(=-\frac{5}{2}sin\left(x+a\right)-1\Rightarrow-\frac{7}{2}\le y\le\frac{3}{2}\)
c/ \(y=1-sin2x+2cos2x+\frac{3}{2}sin2x=\frac{1}{2}sin2x+2cos2x+1\)
\(=\frac{\sqrt{17}}{2}\left(\frac{1}{\sqrt{17}}sin2x+\frac{4}{\sqrt{17}}cos2x\right)+1=\frac{\sqrt{17}}{2}sin\left(2x+a\right)+1\)
\(\Rightarrow-\frac{\sqrt{17}}{2}+1\le y\le\frac{\sqrt{17}}{2}+1\)
Lời giải:
$m^2=(\sin x+\cos x)^2=\sin ^2x+\cos ^2x+2\sin x\cos x=1+2\sin x\cos x$
$\Rightarrow \sin x\cos x=\frac{m^2-1}{2}$
Ta có:
$|\sin ^3x-\cos ^3x|=|\sin x-\cos x||\sin ^2x+\sin x\cos x+\cos ^2x|$
$=\sqrt{(\sin x-\cos x)^2}|1+\sin x\cos x|$
$=\sqrt{1-2\sin x\cos x}.|1+\sin x\cos x|$
$=\sqrt{1-(m^2-1)}.|1+\frac{m^2-1}{2}|$
$=\sqrt{2-m^2}.\frac{m^2+1}{2}$
\(sinx+cosx=m\\ \Rightarrow sin^2x+cos^2x+2sinx.cosx=m^2\\ \Rightarrow sinx.cosx=\dfrac{1-m^2}{2}\)
Mặt khác:
\(sinx-cosx=\left(sinx+cosx\right)-2cosx=m-2cosx\)
Có:
\(\left|sin^3x-cos^3x\right|=\left|\left(sinx-cosx\right)\left(sin^2x+sinx.cosx+cos^2x\right)\right|\\ =\left|\left(m-2cosx\right)\left(1+\dfrac{1-m^2}{2}\right)\right|\\ =\left|\left(m-2cosx\right)\left(\dfrac{3-m^2}{2}\right)\right|\)
Như vậy sẽ có rất nhiều trường hợp thiếu nghiệm, đó là khi \(a=d\) (mất 1/2 số điểm đó em)
Ví dụ: giải phương trình
\(2sin^2x+3sinx.cosx+cos^2x=2\)
Trường hợp này ko xét \(cosx=0\) là mất nửa số điểm rồi (mất hẳn 1 họ nghiệm)
\(\sqrt{x^2-9}-3\sqrt{x-3}=0\left(đk:x\ge3\right)\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=9\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
\(ĐK:x\le-3;x\ge3\\ PT\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\\sqrt{x+3}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
\(\Leftrightarrow2-6sinx.cosx-2sinx+2cosx+2cos^2x=0\)
\(\Leftrightarrow3\left(1-2sinx.cosx\right)-2\left(sinx-cosx\right)+cos^2x-sin^2x=0\)
\(\Leftrightarrow3\left(sinx-cosx\right)^2-2\left(sinx-cosx\right)-\left(sinx-cosx\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\Leftrightarrow x=\frac{\pi}{4}+k\pi\\sinx-2cosx=1\left(1\right)\end{matrix}\right.\)
Xét (1) \(\Leftrightarrow\frac{1}{\sqrt{5}}sinx-\frac{2}{\sqrt{5}}cosx=\frac{1}{\sqrt{5}}\)
Đặt \(\frac{1}{\sqrt{5}}=cosa\) với \(a\in\left(0;\pi\right)\)
\(\Rightarrow sinx.cosa-cosx.sina=cosa\)
\(\Leftrightarrow sin\left(x-a\right)=sin\left(\frac{\pi}{2}-a\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-a=\frac{\pi}{2}-a+k2\pi\\x-a=a+\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=2a+\frac{\pi}{2}+k2\pi\end{matrix}\right.\)