Cho a,b,c là các số thực dương.CMR:
\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mũ 2 và mũ 3 nha bạn. cả 2 cái cách làm tương tự nhau.nếu bạn ko làm đc mũ 3, bn có thể làm mũ 2 chi mình xem đc ko
Ta có:
\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\)\(\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
Tương tự ta có: \(\frac{bc}{b+3c+2a}\le\frac{bc}{9}\left(\frac{1}{b+a}+\frac{1}{c+a}+\frac{1}{2c}\right)\)
và \(\frac{ca}{c+3a+2b}\le\frac{ca}{9}\left(\frac{1}{c+b}+\frac{1}{a+b}+\frac{1}{2a}\right)\)
Cộng theo vế ta có:\(VT\le\frac{1}{9}\left(\frac{bc+ac}{a+b}+\frac{bc+ab}{a+c}+\frac{ab+ac}{b+c}\right)+\frac{1}{18}\left(a+b+c\right)\)
\(\le\frac{1}{9}\left(a+b+c\right)+\frac{1}{18}\left(a+b+c\right)=\frac{a+b+c}{6}\)
Dấu "=" xảy ra khi a=b=c
\(1-\frac{a^2b}{2+a^2b}\ge1-\frac{a^2b}{3.\sqrt[3]{a^2b}}\)\(\rightarrow1-3\sqrt[3]{a^4b^2}=3.\sqrt[3]{ab.ab.a^2}\rightarrow.....\)
BĐT cần chứng minh tương đương với \(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le1\)
Áp dụng BĐT Cauchy ta có: \(2+a^2b=1+1+a^2b\ge3\sqrt[3]{a^2b}\)
Do đó ta được \(\frac{a^2b}{1+a^2b}\le\frac{a^2b}{3\sqrt[3]{a^2b}}=\frac{a\sqrt[3]{ab^2}}{3}\)
Hoàn toàn tương tự ta được \(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le\frac{a\sqrt[3]{ab^2}+b\sqrt[3]{bc^2}+c\sqrt[3]{ca}}{3}\)
Cũng theo BĐT Cauchy ta được \(\sqrt[3]{ab^2}\le\frac{a+b+b}{3}=\frac{a+2b}{3}\)
\(\Rightarrow a\sqrt[3]{ab^2}\le\frac{a\left(a+2b\right)}{3}=\frac{a^2+2ab}{3}\)
Tương tự cũng được \(a\sqrt[3]{ab^2}+b\sqrt[3]{bc^2}+c\sqrt[3]{ca}\le\frac{\left(a+b+c\right)^2}{3}=3\)
Từ đó ta được\(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le1\)
Vậy BĐT được chứng minh. Dấu "=" xảy ra <=> a=b=c=1
P = \(\frac{a^2c}{a^2c+c^2b+b^2a+}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)
P = \(\frac{a^2c+b^2a+c^2b}{a^2c+c^2b+b^2a}=1\)
\(P=\frac{\frac{a}{b}}{\frac{a}{b}+\frac{c}{a}+\frac{b}{c}}+\frac{\frac{b}{c}}{\frac{b}{c}+\frac{a}{b}+\frac{c}{a}}+\frac{\frac{c}{a}}{\frac{c}{a}+\frac{b}{c}+\frac{a}{b}}=\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}=1\)
\(VT=2\Sigma_{cyc}a^2b+\Sigma_{cyc}\frac{1}{ab^2}=\Sigma\left(a^2b+a^2b+\frac{1}{ab^2}\right)\ge3\left(a+b+c\right)=9\)
"=" \(\Leftrightarrow\)\(a=b=c=1\)
Dự đoán bđt xảy ra tại \(a=b=c\)
Đánh giá bđt trên theo bđt Bunhiacopxki dạng phân thức ta được
\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}=\frac{a^2}{ab+2ac}+\frac{b^2}{bc+2ab}+\frac{c^2}{ca+2bc}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+ac+bc\right)}\)
Bài toán hoàn tất khi chỉ ra được \(\frac{\left(a+b+c\right)^2}{3\left(ab+ac+bc\right)}\ge1\)Nhưng đánh giá này chính là\(\left(a+b+c\right)^2\ge3\left(ab+ca+bc\right)\)
Vậy bđt được chứng minh
Ta có: \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\)
\(=\frac{a^2}{ab+2ca}+\frac{b^2}{bc+2ab}+\frac{c^2}{ca+2bc}\)
\(\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{3\cdot\frac{\left(a+b+c\right)^2}{3}}=1\) (Bunhiacopxki dạng cộng mẫu)
Dấu "=" xảy ra khi: a = b = c