Viết gọn các biểu thức sau dưới dạng lũy thừa:
5^12 *7 - 5^11*10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
512 x 7-511 x 10=511 x (5x7-10)
= 511 x 25
= 511 x 52
= 513
a, 48.84
= (22)8.(23)4
= 216.212
= 228
b, 415.515
= (4.5)15
= 2015
c, 210.15 + 210.85
= 210.(15 + 85)
= 210.100
=210.(2.5)2
= 212.52
d, 33.92
= 33 . (32)2
= 33.34
= 37
e, 512.7 - 511.10
= 511.(5.7 - 10)
= 511.25
=511.52
=513
f, \(x^1\).\(x^2\).\(x^3\)....\(x^{100}\)
= \(x^{1+2+3+...+100}\)
= \(x^{\left(1+100\right).100:2}\)
= \(x^{5050}\)
a)33 . 92
= 33 . 34
=33+4
=37
b) 512.7-511.10
= 512.7 - 512.2
= 512.(7-2)
= 512.5
=513
c) x1.x2.x3...x100
= x(100+1).100:2
= x5050
bài 11
\(6.6.6.6=6^4\) '\(b.5.15.15.15.3=15.15.15.15=15^4\)
\(c.81.3.3.3=3^4.3^3=3^7\)
bài 12.
\(a.765.5=153.5^2\)
\(b.837.7.7=93.21^2\)
\(c.568.8.2.4=71.8.2^6=71.2^9\)
`a, = 5^3 xx 3^3 = 15^3`
`b, = 12^3 xx 4^3 = 48^3`
`c, = 625^3 xx 8^3 = 5000^3`
`d, = 625 ^3 xx 125^3 = 78125^3`
`e, = 5^20 : 5^14 = 5^6`
1,\(125\cdot27=5^3\cdot3^3=\left(5\cdot3\right)^3=15^3\)
2, \(12^3\cdot64=12^3\cdot4^3=\left(12\cdot4\right)^3=48^3\)
3, \(25^6\cdot8^3=\left(5^2\right)^6\cdot\left(2^3\right)^3=5^8\cdot2^9\)
4, \(25^6\cdot125^3=\left(5^2\right)^3\cdot\left(5^3\right)^3=5^6\cdot5^9=5^{15}\)
5,\(625^5:25^7=\left(5^4\right)^5:\left(5^2\right)^7=5^{20}:5^{14}=5^6\)
a: \(\left(\dfrac{1}{5}\right)\cdot\left(\dfrac{1}{5}\right)^{15}=\left(\dfrac{1}{5}\right)^{1+15}=\left(\dfrac{1}{5}\right)^{16}\)
b: \(\left(-10,2\right)^{10}:\left(-10,2\right)^3=\left(-10,2\right)^{10-3}=\left(-10,2\right)^7\)
c: \(\left[\left(-\dfrac{7}{9}\right)^7\right]^8=\left(-\dfrac{7}{9}\right)^{7\cdot8}=\left(-\dfrac{7}{9}\right)^{56}\)
Bài 6:
a: \(2^{27}=8^9\)
\(3^{18}=9^9\)
b: Vì \(8^9< 9^9\)
nên \(2^{27}< 3^{18}\)
1.
a) \(3^4\times3^5\times3^6=3^{4+5+6}=3^{15}\)
b) \(5^2\times5^4\times5^5\times25=5^2\times5^4\times5^5\times5^2=5^{2+4+5+2}=5^{13}\)
c) \(10^8\div10^3=10^{8-3}=10^5\)
d) \(a^7\div a^2=a^{7-2}=a^5\)
2.
\(987=900+80+7\\ =9\times100+8\times10+7\\ =9\times10^2+8\times10^1+7\times10^0\)
\(2021=2000+20+1\\ =2\times1000+2\times10+1\times1\\ =2\times10^3+2\times10^1+1\times10^0\)
\(abcde=a\times10000+b\times1000+c\times100+d\times10+e\times1\\ =a\times10^4+b\times10^3+c\times10^2+d\times10^1+e\times10^0\)
5^12*7-5^11*10
=5^12*7-5^11*(5.2)
=5^12*7-5^12*2
=5^12*(7-2)
=5^12*5
=5^13
\(5^{12}.7-5^{11}.10=5^{11}.\left(5.7-10\right)=5^{11}.25=5^{11}.5^2=5^{13}\)