K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2020

c) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\cdot\sqrt{7}+\sqrt{84}\)

\(=\left(2\sqrt{7}-2\sqrt{3}+\sqrt{7}\right)\cdot\sqrt{7}+2\sqrt{21}\)

\(=14-2\sqrt{21}+7+2\sqrt{21}\)

\(=21\)

29 tháng 9 2020

d) \(\left(\sqrt{6}-\sqrt{5}\right)^2-\sqrt{125}\) ??

\(=6+2\sqrt{30}+5-5\sqrt{5}\)

\(=11+2\sqrt{30}-5\sqrt{5}\)

9 tháng 1 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

9√6 + 3√6 - √6 = 11√6

c) (√28 - 2√3 + √7)√7 + √84

= (√4.7 - 2√3 + √7)√7 + √4.21

= (2√7 - 2√3 + √7)√7 + 2√21

= (3√7 - 2√3)√7 + 2√21

= 3.7 - 2√21 + 2√21 = 21

Để học tốt Toán 9 | Giải bài tập Toán 9

7:

a: =>0,5x-5=2 hoặc 0,5x-5=-2

=>0,5x=3 hoặc 0,5x=7

=>x=6 hoặc x=14

b: |5x-2|=-3

mà |5x-2|>=0

nên ptvn

c: =>1/4x+3=0

=>1/4x=-3

=>x=-12

Bài 2:

a: 2/6x5/3=10/18=5/9

b: 11/9x5/10=55/90=11/18

c: 3/9x6/8=1/3x3/4=1/4

d: 4/9x12/16=48/144=1/3

e: 25/15x6/7=5/3x6/7=30/21=10/7

f: 6/10x15/20=90/200=9/20

27 tháng 2 2022

Bài 1

4/5 x 6/7= 24/35

2/9 x 1/2= 2/18= 1/9

1/2 x 8/3= 8/6= 4/3

7/9 x 6/5= 42/45= 14/15

8/7 x 5/9= 40/63

10/11 x 22/15= 220/165= 4/3

Bài 2

2/6 x 5/3= 1/3 x 5/3=5/9

11/9 x 5/10= 11/9 x 1/2= 11/18

3/9 x 6/8= 1/3 x 3/4 =3/12= 1/4

4/9 x 12/16= 4/9 x 3/4= 12/36= 1/3

25/15 x 6/7= 5/3 x 6/7= 30/21= 10/7

6/10 x 15/20= 3/5 x 3/4= 9/20

25 tháng 4 2021

LG a

12√48−2√75−√33√11+5√1131248−275−3311+5113;

Phương pháp giải:

+ Cách đổi hỗn số ra phân số: abc=a.c+bcabc=a.c+bc.

+  Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:  

           √A2.B=A√BA2.B=AB,  nếu A≥0, B≥0A≥0, B≥0.

           √A2.B=−A√BA2.B=−AB,  nếu A<0, B≥0A<0, B≥0.

+ √ab=√a√bab=ab,   với a≥0, b>0a≥0, b>0.

+ √a.√b=√aba.b=ab,  với a, b≥0a, b≥0.

+ A√B=A√BBAB=ABB,   với B>0B>0.

Lời giải chi tiết:

Ta có: 

12√48−2√75−√33√11+5√1131248−275−3311+5113

=12√16.3−2√25.3−√3.11√11+5√1.3+13=1216.3−225.3−3.1111+51.3+13

=12√42.3−2√52.3−√3.√11√11+5√43=1242.3−252.3−3.1111+543

=12.4√3−2.5√3−√3+5√4√3=12.43−2.53−3+543

=42√3−10√3−√3+5√4.√3√3.√3=423−103−3+54.33.3 

=2√3−10√3−√3+52√33=23−103−3+5233 

=2√3−10√3−√3+10√33=23−103−3+1033 

=(2−10−1+103)√3=(2−10−1+103)3

=−173√3=−1733.

LG b

√150+√1,6.√60+4,5.√223−√6;150+1,6.60+4,5.223−6;

Phương pháp giải:

+ Cách đổi hỗn số ra phân số: abc=a.c+bcabc=a.c+bc.

+  Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:  

           √A2.B=A√BA2.B=AB,  nếu A≥0, B≥0A≥0, B≥0.

           √A2.B=−A√BA2.B=−AB,  nếu A<0, B≥0A<0, B≥0.

+ √ab=√a√bab=ab,   với a≥0, b>0a≥0, b>0.

+ √a.√b=√aba.b=ab,  với a, b≥0a, b≥0.

+ A√B=A√BBAB=ABB,   với B>0B>0.

Lời giải chi tiết:

Ta có: 

 √150+√1,6.√60+4,5.√223−√6150+1,6.60+4,5.223−6

=√25.6+√1,6.60+4,5.√2.3+23−√6=25.6+1,6.60+4,5.2.3+23−6

=√52.6+√1,6.(6.10)+4,5√83−√6=52.6+1,6.(6.10)+4,583−6

=5√6+√(1,6.10).6+4,5√8√3−√6=56+(1,6.10).6+4,583−6

=5√6+√16.6+4,5√8.√33−√6=56+16.6+4,58.33−6

=5√6+√42.6+4,5√8.33−√6=56+42.6+4,58.33−6

=5√6+4√6+4,5.√4.2.33−√6=56+46+4,5.4.2.33−6

=5√6+4√6+4,5.√22.63−√6=56+46+4,5.22.63−6

=5√6+4√6+4,5.2√63−√6=56+46+4,5.263−6

=5√6+4√6+9√63−√6=56+46+963−6

=5√6+4√6+3√6−√6=56+46+36−6

=(5+4+3−1)√6=11√6.=(5+4+3−1)6=116.

Cách 2: Ta biến đổi từng hạng tử rồi thay vào biểu thức ban đầu:

+ √150=√25.6=5√6150=25.6=56

+ √1,6.60=√1,6.(10.6)=√(1,6.10).6=√16.61,6.60=1,6.(10.6)=(1,6.10).6=16.6

=4√6=46

+ 4,5.√223=4,5.√2.3+23=4,5.√83=4,5√8.334,5.223=4,5.2.3+23=4,5.83=4,58.33

=4,5.√4.2.33=4,5.2.√63=9.√63=3√6.=4,5.4.2.33=4,5.2.63=9.63=36.

Do đó:

√150+√1,6.√60+4,5.√223−√6150+1,6.60+4,5.223−6

=5√6+4√6+3√6−√6=56+46+36−6

=(5+4+3−1)√6=11√6=(5+4+3−1)6=116

LG c

(√28−2√3+√7)√7+√84;(28−23+7)7+84;

Phương pháp giải:

+ Cách đổi hỗn số ra phân số: abc=a.c+bcabc=a.c+bc.

+ Hằng đẳng thức số 1: (a+b)2=a2+2ab+b2(a+b)2=a2+2ab+b2.

+  Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:  

           √A2.B=A√BA2.B=AB,  nếu A≥0, B≥0A≥0, B≥0.

           √A2.B=−A√BA2.B=−AB,  nếu A<0, B≥0A<0, B≥0.

+ √ab=√a√bab=ab,   với a≥0, b>0a≥0, b>0.

+ √a.√b=√aba.b=ab,  với a, b≥0a, b≥0.

+ A√B=A√BBAB=ABB,   với B>0B>0.

Lời giải chi tiết:

Ta có:

 =(√28−2√3+√7)√7+√84=(28−23+7)7+84

=(√4.7−2√3+√7)√7+√4.21=(4.7−23+7)7+4.21

=(√22.7−2√3+√7)√7+√22.21=(22.7−23+7)7+22.21

=(2√7−2√3+√7)√7+2√21=(27−23+7)7+221

=2√7.√7−2√3.√7+√7.√7+2√21=27.7−23.7+7.7+221

=2.(√7)2−2√3.7+(√7)2+2√21=2.(7)2−23.7+(7)2+221

=2.7−2√21+7+2√21=2.7−221+7+221

=14−2√21+7+2√21=14−221+7+221 

=14+7=21=14+7=21.

LG d

(√6+√5)2−√120.(6+5)2−120.

Phương pháp giải:

+ Cách đổi hỗn số ra phân số: abc=a.c+bcabc=a.c+bc.

+ Hằng đẳng thức số 1: (a+b)2=a2+2ab+b2(a+b)2=a2+2ab+b2.

+  Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:  

           √A2.B=A√BA2.B=AB,  nếu A≥0, B≥0A≥0, B≥0.

           √A2.B=−A√BA2.B=−AB,  nếu A<0, B≥0A<0, B≥0.

+ √a.√b=√aba.b=ab,  với a, b≥0a, b≥0.

Lời giải chi tiết:

Ta có:

(√6+√5)2−√120(6+5)2−120

=(√6)2+2.√6.√5+(√5)2−√4.30=(6)2+2.6.5+(5)2−4.30

=6+2√6.5+5−2√30=6+26.5+5−230

=6+2√30+5−2√30=6+5=11.=6+230+5−230=6+5=11.

23 tháng 5 2021

-17√3/3                                                  b) 11√6 

c) 21                                                            d) 11                             C4:

Để học tốt Toán 9 | Giải bài tập Toán 9

 

 

 

 

9 tháng 10 2021

\(1,\\ a,=\sqrt{\left(3+\sqrt{7}\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}=3+\sqrt{7}-\sqrt{7}+1=4\\ b,K=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}\left(\sqrt{3}-1\right)}=\dfrac{\sqrt{3}-1}{\sqrt{2}\left(\sqrt{3}-1\right)}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\\ c,=\sqrt{\left(6-2\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-4\right)^2}=6-2\sqrt{6}+2\sqrt{6}-4=2\\ e,=\sqrt{\left(2-\sqrt{2}\right)^2}-\left(\sqrt{6}-\sqrt{2}\right)=2-\sqrt{2}-\sqrt{6}+\sqrt{2}=2-\sqrt{6}\)

\(2,\\ a,A=\dfrac{x-3\sqrt{x}+3\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}+3}{x+9}\\ A=\dfrac{x+9}{\left(\sqrt{x}-3\right)\left(x+9\right)}=\dfrac{1}{\sqrt{x}-3}\\ b,x=4+2\sqrt{3}\Leftrightarrow\sqrt{x}=\sqrt{3}+1\\ \Leftrightarrow A=\dfrac{1}{\sqrt{3}+1-3}=\dfrac{1}{\sqrt{3}+2}=2-\sqrt{3}\)

9 tháng 10 2021

cảm ơn bạn

13 tháng 6 2016

\(\frac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\left(DK:x\ne-1;x\ne1\right)\)

\(=\frac{x^4\left(x^3+x^2+x+1\right)+\left(x^3+x^2+x+1\right)}{x^2-1}\)

\(=\frac{x^4\left[x\left(x^2+1\right)+x^2+1\right]+\left[x\left(x^2+1\right)+x^2+1\right]}{x^2-1}\)

\(=\frac{\left(x^4+1\right)\left(x+1\right)\left(x^2+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{\left(x^2+1\right)\left(x^4+1\right)}{x-1}\)

13 tháng 6 2016

\(\frac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\)

\(=\frac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{\left(x+1\right)\left(x^6+x^4+x^2\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\frac{x^6+x^4+x^2}{x+1}\)

\(=\frac{x^2\left(x^3+x^2+1\right)}{x+1}\)

18 tháng 1 2024

giúp mik với ạ!!!

Câu 1: C

Câu 2: A