So sánh -1/5 mũ 300 và -1/5 mũ 500
Giúp Mik Vs Ak
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{-1}{5}\right)^{300}\)\(>\left(\frac{-1}{3}\right)^5\)
Học tốt!!!
Vì \(\left(-\frac{1}{5}\right)^{300}>0\)( mũ chẵn )
Mà \(\left(-\frac{1}{3}\right)^5< 0\)( mũ lẻ )
\(\Rightarrow\left(-\frac{1}{5}\right)^{300}>\left(-\frac{1}{3}\right)^5\)
Ta có :
5300 = (52)150 = 25150
3453 > 3450 = (33)150 = 27150
Vì 25150 < 27150 \(\Rightarrow\)5300 < 3453
Ta có :a)A=(3+5) mũ 3 và B=3 mũ 2+ 5 mũ 2
Hay A= \(3^3+5^3\) >\(3^2+5^2\)
➩ A > B
Tương tự như vậy câu b lad bằng
\(A=\left(3+5\right)^3>3^2+5^2=B\)
\(C=\left(3+5\right)^3>3^3+5^3=D\)
a,320 và 274
320=(35)4=2434>274
Vậy 320>274
b,534 và 25x530
25x530=52x530=532<534
=>534>25x530.
c,224và 266
224=(24)6=166<266
=>224<266
d,1030và 450
1030=(103)10=100010
450=(45)10=102410
Vì 100010<102410nên 1030<450.
e,2300và 3200
2300=(23)100=8100
3200=(32)100=9100
Vì 8100<9100 nên 2300<3200
a) Ta có:
\(2^{300}=2^{3\cdot100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2\cdot100}=\left(3^2\right)^{100}=9^{100}\)
Mà: \(8< 9\)
\(\Rightarrow8^{100}< 9^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) Ta có:
\(3^{500}=3^{5\cdot100}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=7^{3\cdot100}=\left(7^3\right)^{100}=343^{100}\)
Mà: \(243< 343\)
\(\Rightarrow243^{100}< 343^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
c) Ta có:
\(8^5=\left(2^3\right)^5=2^{3\cdot5}=2^{15}=2\cdot2^{15}\)
\(3\cdot4^7=3\cdot\left(2^2\right)^7=3\cdot2^{2\cdot7}=3\cdot2^{14}\)
Mà: \(2< 3\)
\(\Rightarrow2\cdot2^{14}< 3\cdot2^{14}\)
\(\Rightarrow8^5< 3\cdot4^7\)
d) Ta có:
\(202^{303}=202^{3\cdot101}=\left(202^3\right)^{101}=8242408^{101}\)
\(303^{202}=303^{2\cdot101}=\left(303^2\right)^{101}=91809^{101}\)
Mà: \(8242408>91809\)
\(\Rightarrow8242408^{101}>91809^{101}\)
\(\Rightarrow202^{303}>303^{202}\)
a: \(5^{300}=25^{150}\)
\(3^{450}=27^{150}\)
mà 25<27
nên \(5^{300}< 3^{450}\)
a: 5300=251505300=25150
3450=271503450=27150
mà 25<27
nên 5300<3450
Ta có:
\(5^{300}=\left(5^2\right)^{100}=25^{100}\)
\(3^{453}>3^{450}=3^{3.150}=\left(3^3\right)^{150}=27^{150}\)
Vì 25 < 27 nên 5300 < 5453
mk học như vậy
\(3^{453}>3^{450}=\left(3^3\right)^{150}=27^{150}>25^{150}=5^{300}\)
Vậy \(3^{453}>5^{300}\)
\(\left(-\frac{1}{5}\right)^{300}=-\frac{1^{300}}{5^{300}}=-\frac{1}{5^{300}}\)
\(\left(-\frac{1}{5}\right)^{500}=-\frac{1^{500}}{5^{500}}=-\frac{1}{5^{500}}\)
Ta có :
\(5^{300}< 5^{500}\)
\(\Rightarrow-5^{300}>-5^{500}\)
\(\Rightarrow-\frac{1}{5^{300}}>-\frac{1}{5^{500}}\)
\(\Rightarrow\left(-\frac{1}{5}\right)^{300}>\left(-\frac{1}{5}\right)^{500}\)