Chứng minh rằng: Nếu \(\left(a+b+c\right)^2=3.\left(ab+bc+ca\right)\) thì a=b=c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}a^2-bc=x\\b^2-ca=y\\c^2-ab=z\end{matrix}\right.\)
\(\Rightarrow x+y+z\ge0\)
\(\)Đẳng thức cần c/m trở thành: \(x^3+y^3+z^3\ge3xyz\left(1\right)\)
Áp dụng Bất đẳng thức AM-GM cho 3 số x,y,z, ta có:
\(x^3+y^3+z^3\ge3\sqrt[3]{x^3.y^3.z^3}=3xyz\)
=> Đẳng thức (1) luôn đúng với mọi x
Dấu = xảy ra khi: x=y=z hay \(a^2-bc=b^2-ca=c^2-ab\)
và \(a^2+b^2+c^2-\left(ab+bc+ca\right)=0\)\(\Rightarrow a=b=c\)
Nguyễn Xuân Đình Lực:
mình ghi rõ trên rùi, sắp xếp theo thứ tự luôn cho dễ nhìn kìa bạn:
Cặp 1: $a^3b$ và $abc^2$ tạo ra $a^2bc$
Cặp 2: $b^3c$ và $bca^2$ tạo ra $b^2ca$
Cặp 3: $c^3a$ và $cab^2$ tạo ra $c^2ab$
Lời giải:
Ba số thực $a,b,c$ cần có thêm điều kiện không âm mới đúng.
BĐT cần chứng minh tương đương với:
$ab^3+bc^3+ca^3+2abc(a+b+c)\leq a^3b+b^3c+c^3a+ab^3+bc^3+ca^3+abc(a+b+c)$
$\Leftrightarrow abc(a+b+c)\leq a^3b+b^3c+c^3a(*)$
Áp dụng BĐT Bunhiacopxky:
$(a^3b+b^3c+c^3a)(abc^2+bca^2+cab^2)\geq (a^2bc+b^2ca+c^2ab)^2$
$\Rightarrow a^3b+b^3c+c^3a\geq abc(a+b+c)$
BĐT $(*)$ đúng nên ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
a,b,c>0
\(VP-VT=a^3b+b^3c+c^3a-abc\left(a+b+c\right)=abc\Sigma\frac{\left(a-b\right)^2}{a}\ge0\)
@Ngọc Minh Dương
Cách tách ra là cách của người học toán mức TB
Đề bắt C/m nhé
VT=0 hiển nhiên
VP=\(3\left[\left(a^2-ab\right)+\left(b^2-bc\right)+\left(c^2-ca\right)\right]=3\left[a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)\right]=3.\left[0+0+0\right]=3.0=0\)VT=VP=0
Lưu Hiền cái cách của bạn --> đúng cái đề này không cần hỏi >>> cái người hỏi cần cách làm bằng bộ não không phải làm = chân tay
Có :
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(=a^2+b^2-2ab+b^2+c^2-2bc+c^2+a^2-2ac\)
\(=2a^2+2b^2+2c^2-2ab-2bc-2ab\)
\(3\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=3a^2+3b^2+3c^2-3ab-3bc-3ac\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ab=3a^2+3b^2+3c^2-3ab-3bc-3ac\)
Trừ cả 2 vế đi \(2a^2+2b^2+2c^2-2ab-2ac-2bc;\)có :
\(\Rightarrow a^2+b^2+c^2-bc-ca-ac=0\)
\(\Rightarrow2\left(a^2+b^2+c^2-bc-ca-ac\right)=0.2\)
\(\Rightarrow\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(a^2+c^2-2ab\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}}\)
\(\Rightarrow a-b=b-c=c-a=0\)
\(\Rightarrow a=b=c\)
Vậy ...
\(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
=> \(a^2+b^2+c^2=ab+ac+bc\)
=> \(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
=> \(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
=> \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
=> \(\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\)
=> a = b = c
Vậy .....
Này Miyuki Misaki, cho mk hỏi dòng thứ 2 và thứ 3 bn làm như thế nào vậy