Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Xuân Đình Lực:
mình ghi rõ trên rùi, sắp xếp theo thứ tự luôn cho dễ nhìn kìa bạn:
Cặp 1: $a^3b$ và $abc^2$ tạo ra $a^2bc$
Cặp 2: $b^3c$ và $bca^2$ tạo ra $b^2ca$
Cặp 3: $c^3a$ và $cab^2$ tạo ra $c^2ab$
Lời giải:
Ba số thực $a,b,c$ cần có thêm điều kiện không âm mới đúng.
BĐT cần chứng minh tương đương với:
$ab^3+bc^3+ca^3+2abc(a+b+c)\leq a^3b+b^3c+c^3a+ab^3+bc^3+ca^3+abc(a+b+c)$
$\Leftrightarrow abc(a+b+c)\leq a^3b+b^3c+c^3a(*)$
Áp dụng BĐT Bunhiacopxky:
$(a^3b+b^3c+c^3a)(abc^2+bca^2+cab^2)\geq (a^2bc+b^2ca+c^2ab)^2$
$\Rightarrow a^3b+b^3c+c^3a\geq abc(a+b+c)$
BĐT $(*)$ đúng nên ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
a,b,c>0
\(VP-VT=a^3b+b^3c+c^3a-abc\left(a+b+c\right)=abc\Sigma\frac{\left(a-b\right)^2}{a}\ge0\)
Bạn tham khảo bài số 3:
Câu hỏi của bach nhac lam - Toán lớp 9 | Học trực tuyến
\(BĐT\Leftrightarrow\sqrt{\left(a^2b+b^2c+c^2\right)\left(ab^2+bc^2+ca^2\right)}\ge abc\)
\(+\sqrt[3]{abc\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\)
Đặt \(P=\sqrt{\left(a^2b+b^2c+c^2\right)\left(ab^2+bc^2+ca^2\right)}\)
Áp dụng BĐT Bunhiacopski:
\(\left(a^2b+b^2c+c^2a\right)\left(ab^2+bc^2+ca^2\right)\ge\left(\text{ Σ}_{cyc}ab\sqrt{ab}\right)^2\)
\(\Rightarrow P\ge ab\sqrt{ab}+bc\sqrt{bc}+ca\sqrt{ca}\)(1)
Lại áp dụng BĐT Bunhiacopski:
\(\left(a^2b+b^2c+c^2a\right)\left(bc^2+ca^2+ab^2\right)\ge\left(3abc\right)^2\)
\(\Rightarrow P\ge3abc\)(2)
Tiếp tục áp dụng BĐT Bunhiacopski:
\(\left(a^2b+b^2c+c^2a\right)\left(ca^2+b^2a+c^2b\right)\ge\left(\text{Σ}_{cyc}a^2\sqrt{bc}\right)^2\)
\(\Rightarrow P\ge a^2\sqrt{bc}+b^2\sqrt{ca}+c^2\sqrt{ab}\)(3)
Từ (1), (2), (3) suy ra \(3P\ge3abc+\left[\text{Σ}_{cyc}\left(a^2\sqrt{bc}+bc\sqrt{bc}\right)\right]\)
Sử dụng một số phép biến đổi và bđt Cô - si cho 3 số , ta được:
\(3P\ge3abc+3\sqrt[3]{abc\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\)
\(\Rightarrow P\ge abc+\sqrt[3]{abc\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\)
hay \(\sqrt{\left(a^2b+b^2c+c^2\right)\left(ab^2+bc^2+ca^2\right)}\)
\(\ge abc+\sqrt[3]{abc\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\)
Dấu "=" khi a = b = c > 0
P/S: Không biết đúng không nữa, chưa check lại
\(\Leftrightarrow\left(\Sigma a\right)^4\left(\Sigma a^4b^4\right)\left[\Sigma c^2\left(a^2+b^2\right)^2\right]\ge54^2\left(abc\right)^6\)
Giả sử \(c=\text{min}\left\{a,b,c\right\}\)và đặt \(a=c+u,b=c+v\) thì nhận được một BĐT hiển nhiên :P
Theo BĐT AM-GM ta có:
\(c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(c^2+a^2\right)\ge3\sqrt[3]{\left(abc\right)^2\left[\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\right]^2}\)
\(\ge3\sqrt[3]{\left(abc\right)^264\left(abc\right)^4}=12\left(abc\right)^2\)
=> \(\sqrt{c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(a^2+c^2\right)^2}\ge2\sqrt{3}abc\)
Cũng theo BĐT AM-GM \(\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4\ge3\sqrt[3]{\left(ab\right)^4\left(bc\right)^4\left(ca\right)^4}=3\left(abc\right)^2\sqrt[3]{\left(abc\right)^2}\)
=> \(\sqrt{\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4}\ge\sqrt{3}\cdot abc\sqrt[3]{abc}\)và \(\left(a+b+c\right)^2\ge9\sqrt[3]{\left(abc\right)^2}\)
=> \(\sqrt{c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(c^2+a^2\right)^2}\cdot\left(a+b+c\right)^2\cdot\sqrt{\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4}\)
\(\ge2\sqrt{3}\left(abc\right)\cdot\sqrt{3}\left(abc\right)\sqrt[3]{abc}\cdot9\sqrt[3]{\left(abc\right)^2}\ge54\left(abc\right)^3\)
Dấu "=" xảy ra <=> a=b=c
Đặt \(\left\{{}\begin{matrix}a^2-bc=x\\b^2-ca=y\\c^2-ab=z\end{matrix}\right.\)
\(\Rightarrow x+y+z\ge0\)
\(\)Đẳng thức cần c/m trở thành: \(x^3+y^3+z^3\ge3xyz\left(1\right)\)
Áp dụng Bất đẳng thức AM-GM cho 3 số x,y,z, ta có:
\(x^3+y^3+z^3\ge3\sqrt[3]{x^3.y^3.z^3}=3xyz\)
=> Đẳng thức (1) luôn đúng với mọi x
Dấu = xảy ra khi: x=y=z hay \(a^2-bc=b^2-ca=c^2-ab\)
và \(a^2+b^2+c^2-\left(ab+bc+ca\right)=0\)\(\Rightarrow a=b=c\)