K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 9 2020

Từ đường tròn lượng giác ta thấy pt có 2 nghiệm thuộc đoạn đã cho khi và chỉ khi:

\(\frac{\sqrt{3}}{2}\le\frac{m}{2}< 1\Leftrightarrow\sqrt{3}\le m< 2\)

2*sin x=2m+3

=>sin x=m+3/2

\(x\in\left[0;pi\right]\)

=>sin x thuộc [0;1]

=>0<=m+3/2<=1

=>-3/2<=m<=-1/2

NV
16 tháng 9 2021

Từ đường tròn lượng giác, trên \(\left(-\dfrac{\pi}{2};3\pi\right)\):

- Nếu \(0< t< 1\) thì \(sinx=t\) có 4 nghiệm

- Nếu \(-1< t< 0\) thì \(sinx=t\) có 3 nghiệm

- Nếu \(t=0\) thì \(sinx=t\) có 3 nghiệm

- Nếu \(t=1\) thì \(sinx=t\) có 2 nghiệm

- Nếu \(t=-1\) thì \(sinx=t\) có 1 nghiệm

Do đó pt đã cho có 5 nghiệm pb trong khoảng đã cho khi:

\(2t^2-\left(5m+1\right)t+2m^2+2m=0\) có 2 nghiệm pb thỏa mãn:

- TH1: \(\left\{{}\begin{matrix}t_1=-1\\0< t_2< 1\end{matrix}\right.\)

- TH2: \(\left\{{}\begin{matrix}-1< 0< t_1\\t_2=1\end{matrix}\right.\)

- TH3:  \(\left\{{}\begin{matrix}t_1=0\\t_2=1\end{matrix}\right.\)

Về cơ bản, chỉ cần thay 1 nghiệm bằng 0 hoặc 1 rồi kiểm tra nghiệm còn lại có thỏa hay ko là được

17 tháng 9 2021

Em làm cách khác cơ.

Δ = (...)2 nên viết hẳn 2 nghiệm ra

rồi vẽ bảng biến thiên của y = sinx