K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2021

\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)

\(=13+3^3.13+...+3^{96}.13=13\left(1+3^3+...+3^{96}\right)⋮13\)

13 tháng 11 2021

A=2+22+23+...+299+2100A=2+22+23+...+299+2100

⇒2A=22+23+24+...+2100+2101⇒2A=22+23+24+...+2100+2101

⇒A=2101−2⇒A=2101−2

B=3+32+33+...+399+3100B=3+32+33+...+399+3100

⇒3B=32+33+34+...+3100+3101⇒3B=32+33+34+...+3100+3101

⇒2B=3101−3⇒2B=3101−3

⇒B=3101−32

13 tháng 11 2023

A=32+33+34+...+397
3A=33+34+35+...+398

3A-A=(33+34+35+...+398)-(32+33+34+...+397)

2A=398-32

A=(398-32): 2

⇒A=(398-32): 2

thế nhé chúc em học tốt :>>

13 tháng 11 2023

ez

+) 32+33+34+...+397

= (32+33)+...+ (396+397)

= 32.(1+3)+...+396.(1+3)

=32.4+...+396.4

=4.(32+...+396)

Vì 4⋮4 nên 4.(32+...+396)⋮4

+)P sau lm như p1 nhx là nhóm 3 số với nhau

 

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:

a. $2^{29}< 5^{29}< 5^{39}$

$\Rightarrow A< B$

b.

$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$

$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$

$=(1+3)(3+3^3+3^5+...+3^{2009})$

$=4(3+3^3+3^5+...+3^{2009})\vdots 4$

Mặt khác:

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$

$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:
c.

$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$

$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$

$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$

$\Rightarrow A=\frac{3^{101}+1}{4}$

`#3107.101107`

\(A = 1 + 3 + 3^2 + 3^3 + ... + 3^{98} + 3^{99}\)

\(A = (1 + 3) + (3^2 + 3^3) + ... + (3^{98} + 3^{99})\)

\(A = (1 + 3) + 3^2(1 + 3) + ... + 3^{98}(1 + 3)\)

\(A = (1 + 3)(1 + 3^2 + ... + 3^{98})\)

\(A = 4(1 + 3^2 + ... + 3^{98})\)

Vì \(4(1 + 3^2 + ... + 3^{98}) \) \(\vdots\) \(4\)

`\Rightarrow A \vdots 4`

Vậy, `A \vdots 4` (đpcm).

19 tháng 10 2023

A = 1 + 3 + 32 + 33 + ... + 398 + 399

A = (1 + 3) + (32 + 33) + ... + (398 + 399)

A = 1. (1 + 3) + 32. (1 + 3) + ... + 398. (1 + 3)

A = 1.4 + 32.4 + ... + 398.4

A = 4. (1 + 32 + ... + 398)

⇒ A ⋮ 4

23 tháng 10 2023

A=1+3+3^2+3^3+...+3^98+3^99+3^100

A=(1+3+ 3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)

A=(1+3+3^2)+3^3x(1+3+3^2)+...+3^98x(1+3+3^2)

A=13x3^3x13+...+3^98x13

=> 13x(1+3+3^3+...+3^98)chia hết cho 13

Vậy A chia hết cho 13

23 tháng 10 2023

câu b đâu bạn ?

 

23 tháng 12 2023

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17